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Abstract

Unmanned aerial vehicles (UAVs) are rapidly becoming a critical military asset. In

the future, advances in miniaturization are going to drive the development of insect size

UAVs. New approaches to controlling these swarms are required. The goal of this research

is to develop a controller to direct a swarm of UAVs in accomplishing a given mission. While

previous efforts have largely been limited to a two-dimensional model, a three-dimensional

model has been developed for this project. Models of UAV capabilities including sensors,

actuators and communications are presented. Genetic programming uses the principles of

Darwinian evolution to generate computer programs to solve problems. A genetic program-

ming approach is used to evolve control programs for UAV swarms. Evolved controllers

are compared with a hand-crafted solution using quantitative and qualitative methods.

Visualization and statistical methods are used to analyze solutions. Results indicate that

genetic programming is capable of producing effective solutions to multi-objective control

problems.

xi



EVOLUTION OF CONTROL PROGRAMS FOR A SWARM OF

AUTONOMOUS UNMANNED AERIAL VEHICLES

1. Introduction

Unmanned aerial vehicles (UAVs), while not a new concept, have received much attention

in recent years. The very first UAVs were paper balloons used by the Austrians during

the seige of Venice in 1849. The most well known system currently in service is the RQ-

1 Predator. It has been used for operations sinced 1995 in Iraq, Bosnia, Kosovo and

Afghanistan [79]. Initially only a reconnaissance platform, the Predator was updated in

2001 to carry and launch Hellfire missiles [79]. Many other UAV platforms are being

developed to perform a variety of different missions. Currently, at least 32 nations are

developing UAV systems [79].

Micro air vehicles (MAVs) are miniature UAVs. They are generally less than 15

centimeters across with a mass of under 100 grams [37]. Advances in miniturization have

made aerial vehicles of this scale possible. In the future, UAVs the size of insects may be

feasible.

Several MAVs are currently being developed through the Defense Advanced Research

Projects Agencys (DARPA) Synthetic Multifunctional Materials program. The AeroVi-

ronment Wasp (Figure 1) has a wingspan of 13 inches and mass of 6 ounces (170 grams)

[1]. It successfully completed a 1 hour and 47 minute test flight on August 19, 2002 [1].

The Hornet (2), also from AeroVironment has a wing span of 15 inches and mass of 6

ounces (170 grams) [2]. A hydrogen fuel cell was used to power its March 21, 2003 flight.

Beyond the MAV lies the technology of micro electromechanical systems (MEMS).

This recent breakthrough in miniaturization has enabled the development of millimeter-

scale sensor nodes called “Smart Dust” (Figure 3) [48]. The target size for Smart Dust is

1 cubic millimeter [52], small and light enough to be suspended by air currents [48]. Even

beyond Smart Dust, nanotechnology may someday drive the development of still smaller

systems.
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Figure 1 Image of AeroVironment’s Wasp MAV [1]

Figure 2 Image of AeroVironment’s Hornet MAV [2]
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Figure 3 Image of Smart Dust “mote” [82]

1.1 Motivation

The advantages of using unmanned vehicles in the battlespace lie primarily in mission

areas commonly characterized as “the dull, the dirty, and the dangerous” [79]. A single

UAV could replace many humans assigned as sentries. This frees up scarce human resources

for other, more challenging tasks (“the dull”). In addition, UAVs can be used in areas

contaminated with nuclear, biological or chemical agents (“the dirty”). Certain high-risk

mission types, such as suppression of enemy air defenses (SEAD), can also be performed

by UAVs (“the dangerous”) [79].

As technology advances, UAVs are being assigned increasingly demanding missions.

Current UAV control systems require human operators. Such control mechanisms are not

feasible when considering hundreds or thousands of miniature UAVs, sometimes called a

swarm. This problem can be solved by adding another layer of control between the swarm

and the human operator. Instead of directing individual UAVs, the operator directs the

entire swarm. The swarm control system then determines how each individual moves based

upon the operator inputs and current state of the swarm.

3



1.2 Problem Description

The problem addressed in this research is the development of a controller for a swarm

of UAVs. Developing distributed control systems is a difficult task. Previous approaches

have used a simple series of equations to produce realistic group motion [47, 86]. Others

have used a fixed control structure and evolved values for the weight parameters [64].

This research studies the possibility of evolving the control structure itself using sensor

capabilities and movement constraints.

1.3 Goals and Objectives

The goal of this research is to develop a controller to direct a swarm of UAVs in

accomplishing user specified goals. In order to reach this goal, several objecctives must be

accomplished:

1. Develop a realistic model of UAV capabilities including sensors, communications and

movement constraints.

2. Provide a simulated environment for the development and evaluation of controllers.

3. Develop a methodology for evaluating the performance of evolved controllers.

4. Provide visualization of potential solutions.

5. Define metrics to measure performance of developed controllers.

In Chapter 3 the simulation environment is introduced along with a high level descrip-

tion of the vehicle model. This model is refined and the visualization system is discussed

in Chapter 4. The methodology and metrics used to evaluated performance are discussed

in Chapter 5.

1.4 Assumptions

There are two significant assumptions that are made in order to narrow the scope

of this research project. First, we assume that all vehicles use the same controller so

that we only deal with a homogenous swarm. In a real-world scenario, many different

complementary types of vehicles could be employed. For example, fast scout vehicles

4



could be used to locate potential targets. Then reconnissance vehicles could be used to

obtain detailed information about the targets. Finally, attack vehicles would be sent in

to destroy approved targets. The alternative is to combine many functions on a single

vehicle. It is likely that some compromise between the two extremes will prevail. One such

compromise, the Predator, is already used primarily for reconnissance but can also attack

targets of opportunity.

Secondly, an incomplete physics model is used for this research. Ignoring mass and

the effects of gravity and friction greatly simplifies the model. At the same time, it also

reduces the accuracy of the model. In many problems, there is a tradeoff between accuracy

and computational requirements that must be made. Since this research is exploratory in

nature, the reduced accuracy is acceptable.

1.5 Sponsors

The Information Directorate, Air Force Research Laboratory (AFRL/IFTA), Wright-

Patterson Air Force Base is sponsoring this research. The Information Technology Division

(IFT) conducts “broad-based R&D in information technologies to support the Informa-

tion Directorate thrusts of Global Awareness, Dynamic Planning and Execution and Global

Information Enterprise” [4]. The Embedded Information Systems Engineering Branch re-

searches and developed the technologies and processes required to engineer next-generation

weapon and information systems [3]. This research supports that mission by developing a

distributed controller for a group of autonomous vehicles. Distributed control is essential

in developing a robust system capable of dynamically adapting to changes in the mission

and/or environment.

1.6 Organization

The remainder of this thesis is organized as follows: Chapter 2 is a review of current

research in control of autonomous vehicles and genetic programming (GP). In Chapter 3,

high level models for the environment and vehicle are presented. Chapter 4 refines the high

level specification and provides details about the GP algorithm, terminal and function sets,

and system parameters. The need for a visualization environment is also discussed. The

5



design of experiments and testing proceedures used are detailed in Chapter 5. A complete

analysis of experimental results and comparison to previous efforts is also given. Chapter

6 concludes with a discussion on the impact of this research and areas where continued

study is needed.
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2. Current Research in Control and Genetic Programming

There has been extensive research in the area of agent control. Optimization techniques

[12, 13, 46], neural networks [38], rule based systems [17, 18, 29, 105], swarm systems

[20, 31], emergent behavior approaches [28, 36, 47, 64, 86] and genetic programming [5, 6,

69, 74, 97] are some of the methods which have been applied. This chapter begins with

a brief overview of genetic programming. Then contemporary research on agent control

systems is reviewed.

2.1 Discussion of Genetic Programming

This section provides a brief discussion of the origins of evolutionary computation.

The early development of genetic programming is presented, followed by a description

of the GP algorithm. Different genetic operators and individual representations are also

surveyed.

2.1.1 Evolutionary Computation. The notion of evolutionary computation (EC)

as a unified field of study appeared for the first time 1991 as a way to unite researchers

interested in simulating evolution [9]. Common among all approaches within EC are the

principles of Darwinian evolution: reproduction, random variation, competition and selec-

tion. Evolutionary computation includes the study of evolutionary algorithms (EAs) such

as: genetic algorithms (GAs), evolution strategies (ES), evolutionary programming (EP)

and genetic programming (GP).

Genetic programming is the process of evolving computer programs (trees) to solve

problems. The automatic generation of computer programs has long been a goal in Com-

puter Science. Arthur Samuel in his pioneering 1959 work on machine learning [90] states

that it “is necessary to specify methods of problem solution in minute and exact detail, a

time-consuming and costly procedure. Programming computers to learn from experience

should eventually eliminate the need for much of this detailed programming effort” [53].

Even before that though, Alan Turing considered the idea that computers might use

a biological approach [54]. In his 1948 essay “Intelligent Machines”, Turing stated that

“Further research into intelligence of machines will probably be very greatly concerned

7



with ’searches’ ” [54]. He went on to describe three general types of search. The first

type is essentially a search through all possible Turing Machines. The second approach is

the “cultural search” that uses information gained through prior experience to guide the

search. The final approach is the “genetical or evolutionary search.” Turing said [53],

There is the genetical or evolutionary search by which a combination of
genes is looked for, the criterion being the survival value. The remarkable
success of this search confirms to some extent the idea that intellectual activity
consists of various kinds of search.

Though Turing did not define how the evolutionary search would work, some clarification

is found in his 1950 paper “Computing Machinery and Intelligence” [54].

We cannot expect to find a good child-machine at the first attempt. One
must experiment with teaching one such machine and see how well it learns.
One can then try another and see if it is better or worse. There is an obvious
connection between this process and evolution, by the identifications

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter

It is unclear wether Turing’s work served as inspiration for the development of EA as

we know them today. Other attempts at evolving computer programs include Friedberg’s

efforts using a hypothetical language [53]. Friedberg used random initialization and mu-

tation to create and evolve his test programs. The programs were executed and evaluated

based on their performance, all-or-nothing in this case. While Friedberg’s work exhib-

ited some aspects of GP, it lacked the concepts of reproduction, population, generations,

memory of genetic information and crossover [53].

Another attempt to apply evolution to the task of developing artificial intelligence

came from L. J. Fogel in the 1960s [8, 9, 53]. In one example, Fogel, Owens and Walsh [32]

evolved finite-state machines (FSM) as predictors for primality [9]. An initial population

of FSMs was randomly generated. Each individual FSM in the population was tested on

the inputs and given a score based on performance. Offspring were generated via mutation

on aspects of the FSM. The offspring were evaluated like the parents. Individuals with the

highest fitness were selected for the next generation. This technique is called evolutionary

8



programming. It is quite similar to GP, except for the lack of a crossover operation and

the difference in genotype representation.

Despite striking similarities which exist between GA, ES and EP, they were all de-

veloped independently [8]. The ES and EP communities developed in Europe, while the

GA community started in the United States. Genetic programming grew out of work on

GAs [9, 60, 53]. The seminal work in GAs is the 1975 book Adaptation in Natural and

Artificial Systems by John H. Holland [41].

In a GA system, individuals, or chromosomes, are represented as an array of bits.

The genotype is given by the value of the bit strings. The genotype is interpreted to pro-

duce an individual’s phenotype, or behavior. The fitness of an individual in a particular

environment is based on its behavior. After all individuals in a population (µ) have been

evaluated, a fitness-based selection method is used to choose parents for the next genera-

tion. Genetic operators, crossover and mutation for standard GAs, are then applied to the

parent chromosomes to create the children (λ). Crossover is heavily favored for GA, with

mutation used mainly as a way to maintain some genetic diversity in the population. The

situation is reversed for ES, where mutation is the primary genetic operator and crossover

is seldom used.

Members of the next generation are chosen, based on fitness, from the current gener-

ation and the children; (µ + λ) → µ. An alternative approach is to only select members of

the next generation from the set of offspring; (µ, λ) → µ. The selection process continues

until the population has converged on a solution, or a predetermined number of generations

has been evolved [8, 9, 41]. Increasing the mutation rate, reinitializing the population, us-

ing different genetic operators or different system parameters are all approaches used to

cope with premature convergence [9].

2.1.2 Early Genetic Programming. Genetic Algorithms have been modified and

expanded in various ways over the years [9, 53]. Different types of mutation and crossover

operators, and entirely new operators have been developed and tested. Significant for GP

is the study of alternative representations as well as variable length chromosomes. Strings

of 1s and 0s can be used to encode integers, real numbers, permutations or even computer
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instructions [27, 9]. Nichael L. Cramer in his 1985 paper A Representation for the Adaptive

Generation of Simple Sequential Programs [27] described the first GP approach. Cramer’s

goal was to use a simple programming language “suitable for manipulation by GAs” [27]

to evolve useful functions from low-level primitives.

Two important characteristics of such a system were identified [27]. First, it must

work with the standard genetic operators of GAs. A method of encoding the computer

language instructions as binary strings had to be devised. The second requirement was

that all resulting individuals must be syntactically correct programs. This means that

there must be some way to decode the binary strings generated by the GA as a valid

program in the chosen language.

Cramer’s first attempts used a language called JB, based on the algorithmic language

PL. The standard GA genetic operators did not work effectively with the linear integer

representation used by JB. In an attempt to remedy the problems, Cramer devised the TB

language. This language used the tree-like representation which is familiar in GP today.

Modifications were also made to the standard genetic operators in order to allow them to

work with the new representation.

Initial tests using this new tree-based GA approach were encouraging. Cramer used

his system to evolve the multiplication function. His system succeeded 72% more often

than random program generation. Cramer’s work highlighted the need to evolve programs

using a higher level representation than binary strings. He also illustrated the convenience

of the tree or nested list representation.

In 1986, Hicklin applied Cramer’s work to LISP programs [53]. He implemented an

evolutionary system with mutation and reproduction. Also in 1986 Fujiki, and later in

1987, Fujiki and Dickenson extended Hicklin’s efforts by adding crossover and inversion to

the set of genetic operators [53].

John R. Koza is generally acknowledged to be the father of genetic programming.

The GP system he described is considered to be the standard, much as Holland’s GA is

considered standard. In his 1992 book Genetic Programming: On the Programming of

Computers by Means of Natural Selection [53], Koza explained GP and made the first
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comprehensive attempt to explain why it works [60]. Acknowledging the close relationship

to GAs, Koza extended the Schema Theorem to GP. The Schema Theorem provides a

method to calculate the expected number of building blocks, or good combinations of

alleles, for each generation in a genetic algorithm.

2.1.3 Detailed Description of Genetic Programming. The goal of genetic pro-

gramming is for computers to automatically produce program solutions. Human beings

are still needed to provide expertise to the system in order to achieve reasonable results.

Inputs to a GP system include: set of functions, set of terminals, fitness evaluation, sys-

tem parameters and success or stopping criteria [53]. The values chosen for these inputs

ultimately determine the success or failure of the search. Exact values for these inputs are

highly problem domain dependent and are discussed in detail in Chapters 3 and 4.

Genetic programming uses evolutionary forces to guide the search for good solutions.

Solutions in GP are computer programs. The programs that can be generated by a given

GP depend on the set of functions (F) and terminal symbols (T ) that are made available.

Decisions regarding specific terminals and functions are problem dependent and considered

further in Chapter 4.

Good function and terminal sets must satisfy two important properties: closure and

sufficiency [53]. The closure property dictates that every function in F must accept as

input the return value from any functions or terminals. This property is easily satisfied for

simple problems, such as those involving only boolean functions and the terminals “true”

and “false”. When numbers are involved, ensuring the closure property holds is slightly

more tricky. For instance if division is included in F , a special measures must be taken to

handle division by zero [53]. In Koza’s original work [53] only one data type was allowed

for a program. Subsequent research by Montana on strongly typed genetic programming

(STGP) [73] shifted the burden of closure away from the user onto the GP system.

The second important property of the function and terminal sets is sufficiency [53].

Sufficiency means that the functions and terminal symbols used are able to represent the

specified goal. To illustrate this concept, suppose we have F = { +, * } and T = { x, y }
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(x, y ∈ R). The goal function is subtraction (x - y). There is no way subtraction could be

evolved in this case without the negation operator.

After defining the function and terminal sets, the initial population can be created.

Two common methods for generating a new random program tree are the “full” method

and the “grow” method [53]. The full method creates trees such that all paths from leaf

nodes to the root are the same length. This is done by restricting the choice of values for

nodes less than the maximum depth to F . Node values at the maximum depth are chosen

from T .

The grow method creates trees such that paths from leaf nodes to the root vary in

length. Like the full method, a maximum depth is selected. Values for nodes with depth

less than the maximum depth are selected from F∪T . Node values at the maximum depth

are chosen from T [53].

Often, the grow and full methods are combined into the “ ’ramped half-and-half’

generative method” [53]. A minimum and maximum depth parameter are used in order

to create trees of different depths. A depth value is randomly chosen over the interval:

[minimum depth, maximum depth]. The decision of which initialization method to use

is also made randomly. Suppose the minimum depth value is 5 and the maximum depth

value is 8. The expected distribution of tree sizes would be: 25% each of depths 5 - 8.

Approximately half of the trees of each depth would be created using the full method and

the other half using the grow method. Alternatively, fixed values may be used to guarantee

these expected distributions.

In order to better illustrate how individuals are evaluated in GP, it is helpful to use

a couple of example problems. Figures 4 and 5 show two program trees for the symbolic

regression problem and artificial ant problem respectively. The symbolic regression problem

is essentially a curve matching problem [53]. Given a set of values for x and y, what is the

function f() where f(x) = y? In Figure 4, f(x) = 5 + ((8− x) ∗ x).

The artificial ant problem is also well known. An ant is placed on a discrete, torroidal

map. Food is placed in the squares to form a non-contiguous trail. The goal is for the ant

to gather all of the food in the shortest amount of time. A typical instantiation of this
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Figure 4 Sample symbolic regression program tree [53]

Figure 5 Sample artificial ant program tree [53]

problem is the “Santa Fe Trail” which uses 89 pieces of food [53]. The ant has the ability

to see what is in front of it, to turn left or right and to move straight ahead.

These are good example problems, but they are not the only classes of problems used

in GP. One can also interpret the evolved programs as assembly instructions. Koza uses

this technique in evolving electronic circuits [54].

After initialization, each individual (program) in the population is evaluated. In

GP, this is done by executing the program tree. Each internal node, which is always a

function, evaluates its subtrees and after performing any required calculations, returns

a value. Leaf nodes, which are always terminals, are evaluated directly. In the case of

symbolic regression, the leaves represent real numbers and the internal nodes represent
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arithmetic functions such as addition, multiplication and sine. The value of each node

depends on the value of its subtrees.

Evaluation of the artificial ant problem is slightly more complex. The ant must move

around on a simulated map looking for food. Each action the ant takes, such as turning to

the right, left or moving forward counts as a move. While evaluating the tree, the ant is

directed around the map. After the tree has been evaluated, the ant has completed some

number of moves, mi. However, mi is typically much less than the total number of moves

allowed mT . To resolve this, the program is executed repeatedly until either the maximum

number of moves has been made or all the food has been gathered.

After the stopping criteria have been met, the performance of the program is mea-

sured. For the symbolic regression problem, performance might be measured by the error

between the program’s return value and the true function value. Performance for the

artificial ant problem is typically measured as the amount of food gathered.

All individuals in the population are similarly evaluated. Assuming that no programs

have solved the problem, the next generation is created. To create the new population,

first a genetic operator is chosen based on assigned probabilities. Figures 6 through 8

illustrate the crossover and mutation operations. The reproduction operator simply copies

the selected individual.

The appropriate number of individuals for the chosen operator are selected from

the current population. Next, the genetic operator is applied and then the individuals

are placed in the new population. After the new population has been generated, the

fitness evaluation is repeated. This process continues until either a solution is reached or

a maximum number of generations has been evolved. The symbolic representation of the

genetic programming algorithm using Bäck’s notation is given in Appendix B.

2.1.4 Genetic Operators. The genetic operators reproduction and recombination

are viewed as the primary operators in GP [9, 53]. Like GAs, a low rate of mutation is

typically desired [41, 53]. In fact, mutation is deemed a “secondary operator” by Koza,

and often not used at all [53, 69, 87]. Koza advocates fitness-proportional selection in [53],

but other methods such as tournament selection [9, 69, 70] have also been applied.
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Figure 6 Two program trees before crossover. Highlighted nodes are the chosen crossover
points. [53]

Figure 7 Two program trees after crossover [53]
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Figure 8 Illustration of the mutation operator in GP [53]

Permutation is a genetic operator based on the inversion operator described by Hol-

land [41, 53]. Inversion is performed by selecting two points of a binary string and reversing

the characters between them. In principle this helps to move widely separated but related

alleles closer together. This shuffling of alleles ultimately protects them from the disrup-

tive effects of crossover. Inversion has not proven to be an effective genetic operator [53].

Permutation works on a single program tree. An internal node is randomly selected. One

of the k! permutations of the k function arguments is chosen to replace the existing combi-

nation of arguments. Koza tested the permutation operator on the 6-multiplexer problem

and found no advantage to it [53].

Another operation developed by Koza, but rarely used while evolving solutions, is

editing. Editing works by replacing more complex statements with simpler, equivalent

statements. For example the expression (AND (OR X Y) false) could be replaced with

false. For any expression E, (AND E false) always yields false. Editing may be used

during evolution to reduce the complexity of program trees. This has the potential benefit

of speeding up processing. Koza mentions that reducible, nonparsiomonious expressions

may be spared from disruptive crossover by the editing operation. However, he also points

out that the reduction in variation caused by editing could result in poorer solutions. Tests

performed by Koza showed no advantage for editing on the 6-multiplexer problem. Editing
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is often performed at the end of GP runs, resulting in a more efficient and easier to read

solutions [53].

The encapsulation operation is used to allow entire subtrees to be reused. First an

internal node is randomly selected in the tree. The subtree rooted at that node is removed.

A new identifier is created which references the removed subtree. This identifier is inserted

into the tree at the previously selected node. The identifier is added to the set of terminal

symbols and can be used in future mutation operations. Encapsulation provides a method

of evolving reusable functions. No significant difference is noted the performance of the

6-multiplexer problem by adding encapsulation [53].

The assembly of complex systems using simpler components can be found almost

everywhere. A stereo for instance uses an amplifier. The amplifier is in turn made up of

simpler electronic components. Complex organisms like mammals are made up of billions

of cells, which are in-turn composed of smaller elements like DNA or mitochondria. The

idea of identifying and reusing useful building blocks exemplified by the encapsulation op-

eration is expanded upon with the addition of automatically defined functions (ADFs) and

automatically defined macros (ADMs). Other techniques, including Module Acquisition,

have been proposed [96].

The distinction between encapsulation and ADFs is that ADFs are parameterized

functions, while encapsulation accepts no arguments [53]. Automatically defined functions

and macros allow increased generalization. Encapsulation may allow the calculation of

the square of a specific variable, x : (∗xx). Using ADFs, this function can be applied to

any variable, X: (* X X). If the square function is needed for multiple variables, the more

general ADF form would be preferred. This saves the effort required to evolve specialized

functions for specific variables. Tests performed by Koza showed that ADFs can enhance

the performance of GP on even parity problems [53].

Automatically defined macros are very similar to ADFs. Both are used to exploit reg-

ularities in problem domains by increasing the modularity of solutions[96]. One advantage

of using macros instead of subroutines is that macros can create new control structures.

Arguments to ADMs are not evaluated before being passed into the procedure. Consider
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the function “do-twice”, which takes a single argument and evaluates it two times. If the

argument were an expression, such as (add X 5), the ADM has the effect of adding 10 to

X. The ADF is given the argument 15 (when X = 10) because arguments are evaluated

before being passed to the function [96]. Tests comparing ADFs and ADMs showed that

ADMs may have slight advantages in certain problem domains [96].

2.1.5 Alternative Representations. Individuals in GP are computer programs.

They are typically represented as trees, but other representations have been used [60, 53].

Langdon and Poli provide a brief description of alternative representations in their book

Foundations of Genetic Programming [60]. The most common representation other than

trees is as a linear chromosome. This is very similar to the standard GA representation.

In fact, this is the approach Cramer used in his work [27]. Instead of a fixed length

chromosome of conventional GAs, the length is variable. Langdon and Poli divide the

linear approaches into three broad categories: stack based, register based and machine

code.

Stack-based GP, as the name implies, uses a stack to perform calculations and store

results [81]. The original stack-based GP by Perkis used a variable length, linear sequence

of functions and terminal symbols. Terminals, which were all variables, were pushed on the

stack. Functions would pop values from the stack and push results back on. If there were

not enough values on the stack, the function was simply ignored. Programs were evolved

using the standard genetic operators from GA. Perkis acknowledged that an obvious limi-

tation of this initial system was the lack of branching constructs [81].

The Push programming language was developed by Lee Spector specifically for use

in evolutionary computation systems [98]. The Push language is loosely based on LISP.

It supports use of multiple data types, modularity, control structures like branching and

recursion and autoconstructive evolution [98, 97]. Spector defines an autoconstructive

evolutionary system as “any evolutionary computation system that adaptively constructs

its own mechanisms of reproduction and diversification as it runs” [98].

The PushGP system is used to evolve Push programs [96]. Unlike Perkis’ system, it

uses multiple stacks, one for each data type. Looping and recursion are enabled through
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the addition of a special “CODE” stack. Push programs are hierarchical, using parentheses

to group statements. This hierarchical nature allows Push programs to be viewed as trees.

The genetic operators are analogous to those of standard GP. A performance comparison

between PushGP and Koza’s conventional GP was made using N-even-parity problems

[98]. Results showed that the PushGP system scaled better as the number of inputs (N)

increased.

Register-based and machine-code GP are very similar [60]. Both methods use reg-

isters to store and retrieve data. Inputs to the program are stored before the program is

executed and the results are stored in registers upon completion. The distinction between

the two is that machine-code GP uses actual machine specific hardware instructions. In-

structions in register-based GP (and all other GP) are either compiled or interpreted, not

directly executed. Due to the direct implementation, machine-code GP typically executes

ten to twenty times faster than other methods [60].

In addition to linear and tree-like representations, GP systems have also been de-

veloped using graph-based representations [60, 83, 100]. The PDGP (Parallel Distributed

Genetic Programming) system was presented by Poli in 1997 [83]. Nodes in the evolved

graph represent the functions and terminals. The directed edges between nodes indicate

the flow of arguments and results. A “grid” is used to arrange the nodes. Nodes in the

graph connected to the output node are considered active. The other nodes in the graph

serve as introns. Crossover operates by inserting a randomly selected subgraph of one par-

ent into a random point in the other parent. Mutation is performed by either modifying

an edge in the graph or inserting a randomly generated subtree [83].

Tests performed using Koza’s lawnmower problem showed that PDGP was more

effective at finding solutions [83]. Furthermore, PDGP produces results that can easily

be transferred to parallel computing platforms [83]. The PDGP system is not limited to

evolving program graphs. Graphs interpreted as neural nets, semantic nets or finite state

automata are also feasible [83].

Teller’s PADO (Parallel Architecture Discovery and Orchestration) system has pri-

marily been used in image and signal recognition tasks [60, 100]. Unlike PDGP, nodes in
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PADO are not restricted to a grid. In addition to the type and connections between nodes,

the number and and locations are also evolved. A final difference is that while edges in

PDGP represent data paths, edges in PADO represent control paths [83]. A decision is

made at each node that determines the edges that are followed during execution of the

program [100].

Strongly typed genetic programming is an extension to standard GP based on Koza’s

“constrained syntactic structures” [53, 73]. Constrained syntactic structures are based on

the idea that certain problems either require or benefit from the use of a certain tree

structure. The problems used by Koza to illustrate this concept focused on programs that

returned multiple values. The root node was constrained to ensure the appropriate number

of values were generated [53].

With STGP, each terminal, function argument and function return value has an

assigned type [73]. The genetic operators are modified to ensure that consistency is main-

tained. This means, for instance, that a subtree which returns an integer value could not

be swapped into a position expecting a real valued argument. Strongly typed GP is a

useful approach for handling problems that use multiple data types.

One of the major concerns in Genetic Programming is the size of evolved solutions.

As an evolutionary trial progresses, the size of program trees grows larger without a corre-

sponding increase in fitness [58]. Large programs take longer to evaluate resulting in poor

scalability. They also tend to have a large number of unused instructions, referred to as

introns [78, 95]. A significant amount of research has been performed with respect to this

difficult problem [14, 93, 58, 59, 67, 78, 95]. Additional discussion of this topic can be

found in Appendix C.

2.2 Symbolic Description of Problem Domain

The goal of this research is to develop a controller for an autonomous air vehicle.

A swarm of UAVs each using the developed controller is instantiated in a simulated envi-

ronment. The environment is a three-dimensional space containing one or more goals (or

targets), threats and waypoints. A set of capabilities and constraints is associated with
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each vehicle type. In addition to the individual behavior of each vehicle, we are interested

in the overall behavior of the swarm.

The problem domain can be symbolically described by the tuple (V, C, G, W, T, O,

S, R) [64], where:

V is the set of all vehicles:

Vx is the set of all vehicles of type x;∀x, y Vx
⋂

Vy = ∅ where 0 ≤ x 6= y ≤ n,⋃n
i=0 Vi = V and

⋃m
j=0 vxj = Vx where n is the number of distinct vehicle types

and m is the number of vehicles of type x;

G is the set of goals;

W is the set of waypoints {w ∈ W |the set of all waypoints};

T is the set of threats {t ∈ T |the set of all threats};

O is the set of obstacles {o ∈ O|the set of all obstacles};

Sx is the set of capabilities possessed by vehicles of type x;

Rx is the set of constraints imposed on vehicles of type x;

Cx is the controller for vehicles of type x.

The controller Cx generates an output signal using sensor inputs (Sx) and information

about the goals (G), waypoints (W), obstacles (O) and threats (T). The control signal

is used to alter the behavior of vehicle i of type x (vxi), according to the movement

constraints , vehicular constraints (Rx). In addition to objective measurements of controller

performance, subjective qualities are examined. Emergent swarm behavior is analyzed

visually and compared with natural and artificial systems.

2.3 Contemporary Research on Autonomous Agent Control

Autonomous agent control has been extensively studied by many researchers. Several

different approaches have been used to successfully control autonomous agents. The review

of these techniques is arranged according to the algorithms used for agent control and the

methods used for generating the controller.
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Dudek, et al have proposed a taxonomy for multirobot systems [30]. They use the

following attributes for system classification: size, communications range, communications

topology, communication bandwidth, collective reconfigurability, processing ability and

collective composition [30]. These and other aspects of the reviewed systems are discussed.

A summary is provided in table X.

2.3.1 Swarm Systems. Swarm intelligence is an approach to problem solving

modeled inspired by the behavior of natural systems like ant colonies [102]. These systems

exhibit the “phenomenon of self-organization” [102]. This enables individuals to produce

complex group behavior without using a centralized control mechanism. Decentralized

architectures are fault tolerant, reliable, scalable and are able to exploit the inherent par-

allelism of the swarm [20].

Cao et al., reviewed the field of cooperative mobile robotics, giving examples of

several projects [20]. One project mentioned was a behavior-based approach by Parker.

The ALLIANCE architecture was developed in which robots used sensors and broadcast

communications to determine a set of behaviors to apply. Reinforcement learning was

added (L-ALLIANCE) to allow modification of the rule set activation parameters [20].

Another behavior-based approach proposed by Mataric was also cited by Cao et al.,

[20]. Collective behaviors were generated by combining simpler, more basic behaviors. An

automated procedure to develop these behavior combinations using reinforcement learning

was also presented [20]. Both simulated and physical implementations have been per-

formed.

The organization of individuals in the swarm is another aspect which has received

attention [20]. The formation and marching problems are concerned with organizing mem-

bers into specific configurations and then moving as a single unit while maintaining the

prescribed patterns [20]. Trianni et al., studied the aggregation behavior of a swarm of

s-bots, “mobile robots with the ability to connect to / disconnect from each other” [102].

Using an evolutionary approach, they found two distinct types of behavior: static and

dynamic clustering. The static clusters were very compact, having little space between the
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vehicles. Vehicles were spaced further apart in the observed dynamic clustering behavior.

Dynamic clustering was shown to allow more scalability [102].

Movement in formation was explored by Baldassarre et al., [11]. Four Khepera robots

with homogenous controllers were used in the experiments. The controller was evolved

using neural networks [11]. Three distinct, successful formation behaviors were evolved

which showed that, contrary to previous claims by Zaera et al., “artificial evolution is

an effective method for automating the design process of robots able to exhibit collective

behaviours” [11].

In their introduction, Feddema et al., state that increasing attention is being given

to analysis of the stability of multi-vehicle formations [31]. Centralized and decentralized

control laws have been used to drive vehicles into circular formations and away from

obstacles [31]. Feddema et al., also cite the combination of graph theory and decentralized

control as a recent area of research.

2.3.2 Mathematical Optimization. Mathematical optimization techniques at-

tempt to find optimal, or near optimal, solutions to the agent control problem. This is

achieved by solving, or approximating, some cost minimization function. One disadvantage

of this approach is that it is computationally demanding [12]. The amount of computation

required often grows exponentially with respect to the number of inputs, quickly becoming

intractable. Fortunately, approximation techniques can provide acceptable solutions in a

reasonable amount of time [13].

Another common aspect of the optimization projects reviewed is centralized compu-

tation. A central controller is responsible for performing calculations and distributing a

solution to individuals in the system [12, 13, 46]. This centralized approach is vulnerable to

failure of the central controller or communications system. Thus, while the entire system

can operate autonomously, the individual vehicles are not fully autonomous.

In [12], Bellingham et al., present a solution to the multiple task allocation and path

planning problem. The path planning subproblem is described by the following equations:

t̄ = max
p

tp (1)
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J1(t̄, t) = t̄ +
α

NV

NV∑
p=1

tp (2)

where α � 1 is the weight given to the average completion time, tp is the time vehicle p

completes its mission, NV is the number of vehicles and t is a vector of the finishing times

for each vehicle [12]. The parameter α must be determined experimentally and is likely

problem dependent.

Detailed trajectories determine depend upon the ordering of tasks or mission ob-

jectives. The task allocation process is formulated as a multi-dimensional multiple-choice

knapsack problem (MMKP) [12]. The following equation and constraints formalize the

solution to this subproblem:

min J2 =
NM∑
j=1

cjxj (3)

subject to
NM∑
j=1

Vijxj ≥ wi and
Np+1−1∑
j=Np

xj = 1

where cj is the cost for permutation j and xj is a binary decision variable equal to 1

if permutation j is selected, and 0 otherwise. NM is the total number of permutations

considered with the permutations for vehicle p ranging from NP to NP+1 − 1. Only

feasible permutations of waypoints are considered which dramatically reduces the number

of cases to process. The first constraint ensures that each waypoint is visited wi times.

The second constraint ensures that only one permutation is assigned to any vehicle [12].

The algorithm presented by Bellingham et al., allows for comparison of multiple po-

tential trajectories and task allocations [12]. The example problems described in [12] were

all quite small. The largest test problem used 6 vehicles and 12 waypoints. No performance

metrics were provided to show how long it took to solve each problem. Solutions produced

were more efficient than those given by a simple “greedy” heuristic [12] . The scalability

of this type of approach depends on the ability to restrict the search space by identifying

good candidate task permutations and rejecting trivially poor candidates.
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The application of probabilities to the path planning problem is a natural extension.

The real world is an uncertain place. Bombs don’t always destroy their target. Probabilities

allow the representation of uncertainty. This is especially important when considering the

likelihood of mission success. Missions with a low chance of success may be modified with

additional vehicles or fewer targets.

Jun and D’Andrea developed a system using a probability map [46]. The environ-

ment under consideration is split into regions or cells of equal size. Each cell has a three

associated probabilities: a vehicle is detected while in the cell, the cell is occupied by an

enemy and the vehicle is destroyed by the enemy [46]. It is assumed that some mechanism,

such as intelligence gathering or surveillance, exists for determining the probabilities of

these events. The probability map is converted to a digraph. The edge weights are derived

from the above probabilities. This transforms the problem into that of finding the short-

est path between two nodes [46]. The shortest path problem can be easily solved using

Djikstra’s algorithm or the Bellman-Ford algorithm.

One limitation of this work is that only a discrete, two-dimensional map was con-

sidered. In addition, only scenarios with a single target were discussed. Multiple vehicles

were considered, but still relied on a centralized control system. Despite these concerns, the

research illustrates that probabilities can be effective in solving path planning problems.

Bellingham also extended his original path planning algorithm [12] to include uncer-

tainty [13]. A “stochastic optimization formulation” is presented that takes into account

changes in probabilities as the environment is modified. An example of this is the destruc-

tion of an anti-aircraft site. Vehicles moving through a defended region will have different

survival probabilities than vehicles moving through after the anti-aircraft systems have

been destroyed [13].

Previous work used a simpler model which did not take such changes into account

[13]. The new stochastic approach produced significantly better plans, but also required

approximately 4 times the computational effort. This work uses a continuous space instead

of a discrete grid. It also uses a rich, dynamic simulation environment with different types

of vehicles and objectives [13].
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2.3.3 Subsumption Architecture. A unique approach to robot control was dis-

cussed by Brooks [16]. The traditional approach was to decompose behavior into functional

units. Separate modules were used for perception, modeling, planning, task execution and

motor control [16]. These modules were connected serially. For example, the modeling

subsystem would create a model of the current situation. The model would then be passed

to the planning module, which would generate an appropriate plan.

In contrast, Brooks proposed decomposing problems based on task achieving behav-

iors [16]. Different modules included: avoid objects, wander, explore, build maps, monitor

changes, identify objects, plan changes to world and reason about behavior of objects [16].

These modules are arranged in parallel and can work simultaneously to solve problems.

This is called the subsumption architecture.

One advantage of the subsumption architecture is that more complex behaviors are

developed in a bottom-up approach. Basic behaviors such as obstacle avoidance can be

developed and tested without implementing higher level behaviors [16]. This technique

allows a form of distributed control where the results of various subsystems are combined

to determine the action of the system. The idea of complex behavior resulting from the

interplay of simple actions is common in swarm research [20, 86, 102].

The subsumption approach was used by Lua et al., to control UAVs [65]. Their

objective was to develop a control mechanism to perform a synchronized, multi-point

attack using only local communication. The behaviors of: avoid, attack, orbit station,

orbit target and search were defined and implemented [65]. Appropriate behaviors are

selected using the sensor inputs and current state of a vehicle. For example, if two vehicles

move too close to one another, their avoid behavior is activated until the problem has been

remedied.

The approach used by Lua et al., was effective at coordinating a near simultaneous

attack of multiple UAVs using local communications without a centralized control mecha-

nism [65]. Simulations using 5 and 18 UAVs to attack a single, stationary target showed

that this approach is effective and scalable [65]. Human operators must still design the

behaviors and how they influence and subsume one another. Depending on the mission
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and environment, it may not always be easy, or possible to produce the behaviors and

relationships. One way around this problem is to use the computer to produce a solution.

2.3.4 Neural Networks. Research by Harvey et al., discusses why producing

control systems is difficult and reviews possible solutions [38]. It is difficult to foresee all

possible ways an agent might interact with an environment. The complexity involved in de-

signing cognitive architectures can “scale with the number of possible interactions between

modules” [38]. Solutions to such a problem require either an intractable computational

effort or a non-generalizable, “creative act” [38].

The process of evolution is suggested as an alternative to both functional and sub-

sumption approaches. One can use evolutionary forces to guide the search for a solution.

Simulation is recommended as the best means of evolving control systems due to time

and resource constraints required for real world evaluations. As much realism as possible

should be maintained in the simulation to facilitate the transfer of results into the real

world [38].

The genetic programming approach is rejected for several reasons. First, programs

which support looping constructs fall victim to the halting problem. This has been reme-

died by simply not allowing looping or interrupting programs after a certain time limit.

The authors also object to treating the brain as a computational system. They believe

it should be treated as a dynamical system instead [38]. Whether or not this is the case,

GP has produced patentable, human competitive results [54]. The final objection is about

the language under consideration. The languages BL and GEN are discounted as being

too high level to effectively evolve solutions. There is no reason that alternative language

constructs cannot be used instead of those proposed by Brooks [38].

The chosen solution structure was a neural network. The number and type of internal

nodes was evolved as well as the number and weights of links between the nodes. Neural

networks evolved the ability to avoid obstacles, maximize distance from the starting point

and maximize the area circumscribed by the robot’s path [38]. One difficulty with neural

networks is analyzing them to determine how they function. This is possible with small
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networks, but difficult at best for those of moderate size. The authors conclude, “Artificial

evolution seems a good way forward” [38].

2.3.5 Artificial Immune Systems. Natural immune systems are the inspiration

for another evolutionary approach to robot navigation. In immune systems, antibodies

are detectors for antigens. Once an antibody detects an antigen, an immune response is

activated. This process can be used in robot navigation as well. Robot sensor information

corresponds to antigens. Antibodies are represented as patterns which match potential

sensor inputs and have specific actions associated with them [104]. Antibodies may also

stimulate or suppress other antibodies. This forms a complex network which enables the

emergence of highly complex behavior [104].

When an antigen is detected, the strength or concentration of all antibodies is calcu-

lated. The result depends heavily on the network of connections between antibodies. The

following equations are used [104]:

dai(t)
dt

=

 N∑
j=1

mjiaj(t)−
N∑

k=1

mikak(t) + mi − ki

 ai(t) (4)

ai(t) =
1

1 + exp(0.5− ai(t))
(5)

where:

N, number of antibodies in the network;

mi, affinity between antibody i and the given antigen;

mji, affinity between antibodies j and i, the degree of stimulation;

mik, affinity between antibodies k and i, the degree of suppression;

ki, natural death coefficient of antibody i.

Roulette-wheel selection is then performed to select the antibody that will be activated.

Once an antibody is selected, its associated action is performed by the robot.

The network of connections between antibodies is modified using a genetic algorithm

[104]. Individuals are composed of a group of antibodies. Crossover exchanges a randomly
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determined number of antibodies between two selected groups. Mutation can operate in

two ways. First, a single network connection in an antibody can be modified. Second, any

number of network connections in an antibody can be deleted.

Experiments were performed using the garbage collection problem [104]. The robot

must move through a simulated environment, collect garbage and return it to the base.

Performance of the evolved immune network was compared to that of an immune network

designed with expert information [104]. The evolved network was able to perform the same

task at or above the level of the hand coded system. Another experiment showed that an

immune network enabling a robot to follow a moving object could be evolved using only

mutation [104]. Tests using a Khepera II robot were performed to show that an evolved

network can be used to control a real robot.

One of the limitations of the approach described is that neither the sensor/action

pairs nor the antibodies were evolved [104]. In order to completely search the space,

all possible sensor/actions pairs and antibody patterns must be included. Alternatively,

expert knowledge could be used to select the patterns to include. It is also difficult to see

how even simple immune networks determine which actions to take. The decision process

is similar to how neural networks operate.

2.3.6 Rule Based Systems. Several projects have used rule-based learning ap-

proaches to solve the autonomous navigation problem [17, 18, 29, 105]. In this approach,

a set of if-then rules is used to select the appropriate action. Each if-then rule matches

one or more conditions to an action. When the antecedent evaluates to true, then then

associated action is performed.

Genetic algorithms are often used to generate effective rule sets. Bugajska et al.,

compared the performance of an evolved controller for micro air vehicles (MAVs) to human

operators [17]. The computer controllers were evolved using SAMUEL, “an evolutionary

algorithm-based rule learning system” developed by John J. Grefenstette [17]. The assigned

task was surveillance of specific “areas of interest” within a larger area. Fitness was

determined by the time spent within the target areas. The evolved controller performed

as good or better than human operators both in terms of the number of vehicles surviving
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and the total fitness. The SAMUEL controller performed better at reactive tasks, but it

was not expected to be able to cope as well with more high-level cognitive tasks [17].

Designing sensors for an intelligent vehicle is “difficult for an engineer, using tradi-

tional methods” [106]. Evolution of the type and placement of these sensors is performed

by a GA. Individuals are then evaluated in several different environments of increasing

sophistication. Fitness is measured by the sensor cost and amount of sensor coverage

provided[106]. One interesting result of their research was that sensor arrangements evolved

using a simpler simulation environment performed nearly the same as those evolved using

a much more sophisticated and computationally intensive simulation [106]. This may not

hold true when considering real world implementations or other problem domains.

Bugajska and Schultz used the SAMUEL and GENESIS systems in studying co-

evolutionary learning processes [18] . They argue that in nature, form and function of

individuals evolves simultaneously. If one wishes to model this process in artificial systems,

then the form and function of autonomous agents should also be allowed to co-evolve

[18]. The goal of this approach is to evolve an efficient MAV controller and sensor suite

combination.

The SAMUEL system was used to evolve the stimulus-response rules. These rules

matched vehicle sensor information and determined the appropriate turn rate. The GEN-

ESIS system was used to evolve the number and type of sensors. A single sensor model was

used in the research [18]. The simulation environment was a forest. Fitness was determined

by the distance flown before reaching the target. The most successful sensor suite used

narrow beams which allowed for accurate obstacle location and avoidance response [18]. A

multi-objective approach could also be used to solve these co-evolutionary problems.

Daley et al., used SAMUEL to evolve solutions to problems requiring multiple be-

haviors [29]. The example given was a target “tracking task with fuel constraints” [29] in

which an agent must track a target and return to the base to refuel. An executive task is

used to choose between the tracking and refueling tasks [29]. Two different approaches to

co-evolutionary learning were attempted: mutual and independent. The mutual approach

attempted to learn the tasks and relationships between them at the same time. In the
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independent approach, the tasks were learned first. Then the relationships between them

were developed.

The mutual approach failed to correctly learn the relationships between tasks [29].

It is believed that the executive task did not allocate enough trials to the docking task for

it to successfully learn. The independent approach was very effective [29]. This research

indicates an increase in the complexity of tasks that require more than one behavior.

Evolving a control system for multiple agent systems is discussed by Wu, Schultz

and Agah [105]. Their work focuses on using robot teams for surveillance. Similar to

other approaches, GAs are used to evolve variable sized rule sets [105]. Each individual

is composed of a variable number of rules. Rules are defined by 12 bits. The first 8 bits

represent information from the 8 vehicle sensors. Sensors indicate whether there is an

object within range in the specified direction. The remaining 4 bits encode the action to

be performed when the rule is selected. Mutation is allowed at any point, but crossover is

restricted to rule boundaries [105].

Fitness was measured by the total area under surveillance by all vehicles. Experi-

ments focused on the effects of parsimony pressure, mutation rate and initial genome length

[105]. Parsimony pressure and initial genome length were found to have little impact on

fitness. Lower fitness rates produced significantly better results [105]. This research shows

the ability to evolve a controller for a group of distributed vehicles. There is no communi-

cation required between vehicles in in this example [105].

Another approach to autonomous navigation of a single robot is presented in [21].

Cazangi et al., discuss the value of simulation but also emphasize the importance of real

world implementations. Controllers are developed in both simulated and real environments.

A modified learning classifier system (LCS) is used for learning rules and determining

appropriate actions [21].

In the modified LCS, rules are matched based on their similarity to the current

system inputs. The action associated with the selected rule is then performed and rule

weights are updated according to the results of the action. When an event is triggered,

the rule discovery sub-system is activated. There are 3 events: collision, target capture

31



and monotony. A different fitness function is associated with each event to help direct the

search for improved rules [21].

Results of the experiments performed revealed that controllers generated in a simu-

lated environment were able to perform equally well in a similar real world environment.

They also indicate the feasibility of evolving a controller in a real world environment. Fi-

nally, the evolved LCS controller displayed some degree of generalization when placed in

a different environment [21]. Future research into more complex environments and agent

coordination are needed [21].

2.3.7 Emergent Behavior Systems. Complex behavior can result from the in-

teraction of a few very simple rules. Fractals are one example of how simple rules can

produce complex results. Other examples of this can be found in flocks of birds, herds of

land animals or schools of fish [86]. Such systems are decentralized and do not require any

form of global control or communications [36, 86].

Physics has been a source of inspiration for the study of particle systems. The

interactions of particles are well known and can be represented using simple equations

[101]. Particle simulation is efficient, scaling as O(n2) at most. Traditional methods scale

as O(n2) or worse [101]. There are many parameters that can be chosen for particle

simulations such as: inertial forces, friction, drag and gravity. Heterogeneous particles can

can also be easily handled [101].

Trahan et al., present results that illustrate how particle simulation concepts can

exhibit target seeking behavior [101]. The system uses decentralized control with local in-

teractions. One advantage of this approach is that it is easily extended to three-dimensions

[101]. Additional research into the types and magnitudes of user-definable forces is needed

[101].

Assembling a large number of agents or robots into a specified formation, using

decentralized control, is useful [49]. Such an assembly may be fuel efficient or produce a

low radar signature. Unfortunately, it is difficult or impossible to determine the global

behavior of a system operating under local rules [49]. A method for self assembly is

presented and proven by Klavins [49].
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Agents, or parts, are able to sense the positions and states of other agents near

them. Using this information, as well as its own position and state and a lookup table,

an agent is able to determine how it should move. For example, if an agent detects a

neighbor it can join with, it will move toward the other part. Actual agent movement

is governed by a complicated control law formed using vector fields [49]. The methods

presented apply to homogenous agents in a two-dimensional environment but should be

extensible to heterogeneous and three-dimensional structures [49].

A three-dimensional simulation environment and some initial test results are reported

in [36]. The simulator is a Java-based commercial product developed by Icosystems Cor-

poration. Different vehicle control strategies are considered. In the initial strategy for a

surveillance mission, each vehicle moves in a straight line until it reaches the boundary of

the simulation space. The vehicles then turn to avoid exiting the area. Using this simple

strategy, nearly half the search area was covered [36].

An improved strategy used artificial pheromones to mark areas which had previously

been visited [36]. Other vehicles were able to detect areas which had been visited already

and move toward unexplored regions. Using the pheromone strategy, swarms were able

to achieve approximately 65% coverage [36]. The authors include a brief discussion of

the importance of swarm size when evaluating performance between different techniques.

Having a larger swarm is likely to provide a higher success rate for many tasks [36]. One

limitation with this approach is that all of the control strategies presented were hand coded,

not learned or evolved.

Reynolds produced a very important paper on the motion of animals, most notably

flocks of birds [86]. His work was motivated by finding a behavioral model so that large

groups of animals could be used in computer animation. A model of flock behavior is

needed because scripting the movements of each individual bird is too time consuming

[86]. A change in the flight path could require updating each individual in the flock. It is

also difficult make the flock appear realistic when each individual is separately controlled.

The technique used is similar to particle systems [86]. Instead of directly applying

the laws of physics, new rules controlling an individual’s behavior are implemented. This

33



approach is decentralized and only local information is needed to determine the next move.

Another advantage is that flocks do not appear to have a complexity limit [86]. Flocks can

continue to grow regardless of the current size because the computation required of each

individual is roughly constant [86].

Three behaviors are believed to govern flocking behavior [86]:

1. Collision Avoidance: avoid collisions with nearby flockmates

2. Velocity Matching: attempt to match velocity with nearby flockmates

3. Flock Centering: attempt to stay close to nearby flockmates

Each behavior produces a velocity vector. One approach is to use a weighted average

of these velocity vectors. This can cause problems in critical situations when the vectors

conflict [86]. A different technique that resolves this problem is to enforce a priority

ordering. A fixed amount of acceleration is available for allocation by the navigation

system [86]. Thus, the most urgent needs are satisfied first and lesser needs are temporarily

ignored. The result is an extremely realistic flocking behavior [86].

A Java application to simulate two-dimensional flocking and line forming behavior

was developed and presented in [28]. The weighted average approach was used to calculate

the acceleration vector. Vector weights were defined as a function of distance from the

individual. Parameters of the system include: maximum turning angle, bird speed and

minimum and maximum separation distances. Parameter values and functions used were

determined experimentally.

In [64], an evolutionary approach to determining vector weight coefficients is used.

Four vectors representing cohesion, separation, threat avoidance and goal seek are used

in determining a new vehicle direction. Attempting to manually determine appropriate

weights for the vectors could be an unrewarding experience. The approach presented used

an ES to learn the associated weights.

An innovative visibility model is developed in [47]. In a real swarm or flock, some

individuals will visually obscure others [86]. The proposed visibility model takes such

effects into account. Another important aspect of [47] is a new method of classifying
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swarms based on behavioral characteristics. This is a useful approach since swarm behavior

has an impact on other properties, such as communication. A chaotic swarm, similar to a

swarm of bees, is very different from a stable swarm arranged in a lattice structure. A final

area considered in [47] is swarm network communication. A link between swarm behavior

and network performance is established. Previously, no adequate method for measuring

the network performance of swarms existed.

2.3.8 Genetic Programming. Genetic programming has been used in the devel-

opment of control systems by many researchers. In [5], a GP-based system (EvoCK) is

combined with an existing learning mechanism (Hamlet) to evolve planning control rules.

Tests were performed for the blocks world and logistics domains. The combined system

produced more efficient solutions for the blocks world domain. The best solutions for the

logistics domain were produced by EvoCK alone [5]. Other approaches have used GP to

evolve plans and planners [5]. The authors state that “searching for just the heuristics is

a more feasible task” [5].

A solution to the two-dimensional pursuer/evader (2DPE) problem is presented by

Moore and Garcia [74]. In this problem a pursuer, such as a missile, chases after an

evader, like an aircraft. The pursuer is faster and more agile, but is given a limited

amount of time to reach the evader. The extended 2DPE adds simple physics (force, mass

and acceleration) to the problem [74]. The pursuer used a set method of navigation, the

proportional navigation technique [74]. Pursuers varied in mass and acceleration capability.

Evader programs were evolved against 3 pursuers, each using the static pursuer pro-

gram. Programs were evaluated using multiple scenarios with different angles of attack and

initial distances between pursuer and evader [74]. Control programs capable of successfully

evading all pursuers were evolved. When tested using a different initial distance and angle

of attack, the evolved programs were still able to evade with approximately 85% to 100%

efficiency [74]. This research shows the ability of GP to successfully deal with increases in

problem complexity. It also highlights how realistic simulations can be used to accurately

model real world situations.
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Koza and Rice compared the performance of GP to reinforcement learning techniques,

like Q learning [55]. They developed a GP solution to the robot box moving problem. In

this problem, the robot must push a box from the center of a room to the edge, subject to

time constraints [55]. In all tests a program was evolved which successfully completed the

task.

While traditional learning algorithms are also able to solve this problem, they also re-

quire much more human input [55]. The authors proclaim that the effort to properly setup

the learning algorithm “probably require[d] more analysis, intelligence, cleverness, and ef-

fort than programming the robot by hand” [55]. Genetic programming is not completely

automatic either, but more of the effort is left for the algorithm. Instead of determining

in advance what a solution should look like, GP relies on evolution directed by a fitness

function [55].

Another robot navigation task that GP has been applied to is the wall following

problem [62]. In this problem, a robot must move along the walls of a room. Along the

walls are a number of extrusions [62]. These can be representative of furniture, such as

bookcases, that the robot must navigate around. Fitness is measured by the number of

cells adjacent to walls or extrusions that are never entered [53]. The robot is limited in

the number of moves it can make [62].

The robot model used 8 boolean obstacle detection sensors and was capable of moving

either north, south, east or west [62]. The space used in [62] was a discrete grid, though

the problem has also been solved for a real-valued space [53]. Successful control programs

were evolved for all room types tested [62]. One concern was the problem of local minima.

This occurs when the population stagnates at a certain level of fitness, even though better

solutions exist. Increasing the level of exploration of the search space may result in the

identification of more fit points, allowing the search to move beyond the local minimum.

A slightly different approach to robot navigation is discussed in [45, 103]. This

approach used GP to evolve high-level fuzzy coordination rules for pre-programmed low-

level functions or fuzzy behaviors [103]. Determining how the low-level functions interact
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to achieve a high-level behavior is “not entirely intuitive” [103] and required significant

experimentation [45].

Genetic programming was applied to discover good coordination programs without

requiring expert knowledge [45]. Results indicate that GP was able to evolve good co-

ordination strategies. The evolved coordination programs were also tested in additional

environments to determine generalizability. The strategies were moderately generalizable

[45]. This research shows how GP is able to discover complex relationships with a minimum

of human input.

Nordin and Banzhaf used GP to evolve obstacle avoidance behavior for a Khepera

robot [77]. Two architectures were examined, a memoryless and a memory-based archi-

tecture. Fitness was measured using proximity to objects and the relative and absolute

speeds of the two motors [77]. The fitness function used was:

fitness = α(m1 + m2 − |m1 −m2|)− β
7∑

i=0

si (6)

with motor speeds 0 ≤ mi ≤ 15 and sensor values 0 ≤ si ≤ 1023 [77]. Higher fitness scores

were awarded for staying away from objects (low values of si) and by moving fast (high

values of mi) and in a straight line [77].

The memoryless approach used only the robot’s sensors to determine how to move.

A control function relating the sensor values and motor outputs was evolved [77]. Initially,

the robot crashed frequently, but was able to learn simple obstacle avoidance in about 10

minutes. After approximately 50 minutes of training, or 150 generation equivalents, colli-

sions were almost completely eliminated [77]. Robot behavior evolved with this approach

was chaotic, “resembl[ing] that of a bug or an ant” [77].

The second approach used a memory buffer to store vectors of sensor and motor

values [77]. This memory was used with current sensor values to determine the best move.

The memory based system was much faster at learning the obstacle avoidance behavior,

requiring only a few minutes [77]. The observed behavior was also much different than the
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memoryless approach. Controllers evolved using memory moved in straight lines or curves

and displayed distinct obstacle avoidance strategies [77].

Reynolds explored several aspects of evolving stimulus-response controllers for agents

in a two-dimensional environment [87, 89, 88]. Reynolds notes that the evolved controllers

are “reactive agents” [87], similar to Brooks’ subsumption architecture [16]. Steady state

GP (SSGP) was used in all of the experiments. Sensor capabilities are evolved along

with control. Manually specifying sensor placement could influence the type of strategies

evolved [89]. Constant forward motion is used in all experiments.

In [87], a controller for a group of “critters” is evolved. They must avoid collisions

with one another, obstacles in the environment and a roaming predator. Each controller is

limited to information about the world which is accessible through its sensors. Using this

“foggy world” perception model, objects are detected with an intensity inversely propor-

tional to the square of their distance from the observer [87]. Objects are also obscured by

other objects between them and the sensors.

Robustness of solutions was considered [87]. The solution used was to use random

starting positions and orientations for the critters and predator. Each controller was

tested using two different starting points. Increasingly robust behavior may be achieved

by increasing the skill of the predator [87]. This could be achieved through coevolution of

the predator and critters [87].

The only action available to the critters is turning in a specified direction. Even

with the limited sensor and movement capabilities, complex reactive behavior was evolved

[87]. One improvement identified for the model was the ability to sense, in addition to

proximity, the direction of movement for other critters or the predator [87]. The evolution

of improved grouping behavior is in need of additional research [87].

In [89], the focus is vision-based obstacle avoidance. Only single critters were consid-

ered. Critters were evaluated based on how long they survived while maneuvering through

an environment with obstacles. Two experiments were performed, one using a single fit-

ness trial and one using three trials with different starting locations. The first experiment

produced individuals three times more fit than those in the second experiment. This per-
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formance decrease is tentatively attributed to the increased complexity required to evolve

generalized controllers, though additional insight is needed [89].

Reynolds also looked at the evolution of corridor following behavior [88]. Again, only

a single critter is considered. Emphasis is placed on developing non-brittle solutions that

are able to perform effectively in diverse environments. An important distinction is made

between the “ ‘steering’ and ‘path determination’” approaches being considered and “path

planning” [88]. The evolved controllers rely on sensor inputs to determine appropriate

actions, not predetermined plans.

A novel approach to the generalization problem is taken. When a critter successfully

navigates a corridor, it is tested on a different corridor. Sixteen different corridors were

used. This approach ensures that controllers to successfully navigate one corridor are

evolved before attempting to generalize them [88]. Although the desired behavior was

evolved, questions of robustness and reliability have not been satisfactorily resolved [88].

This remains an open issue for GP.

In contrast to the reactive programs generated by Reynolds, Andre evolved programs

that created a model of their environment [6]. Operating in a two-dimensional grid world,

the objective of the MAPMAKER system was to collect gold. The system was composed

of two co-evolved programs: map maker and map user. The map maker used sensor

information about the environment to create a map which the map user used to locate the

gold. Coordination between the two programs was essential to accomplishing the task [6].

A simple memory system was also used in [40]. The experiment considered a two-

dimensional grid world filled with explosives and energy. Agents were able to maintain

a list of cells they had already visited. Experiments with one agent and multiple agents

were performed. Robust solutions were developed by using a different map for each new

generation.

Genetic programming has also been used to evolve control programs for multiple

predators in predator/prey systems [39, 69]. Haynes et al., compare an evolved solution to

previous hand-coded efforts [39]. The simulated environment was a two-dimensional grid

world with four homogenous predators and a single prey. Predators were not given explicit
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communication abilities. Strategies competitive with the best deterministic algorithms

were evolved [39]. The lack of explicit communication between predators was an identified

weakness of the work [39].

Luke and Spector examined teamwork and coordination in the predator/prey model

[69]. They considered a real-valued two-dimensional space. Two aspects reviewed were

“breeding” and sensing capabilities. Breeding was a concern for experiments where each

predator used a separately evolved controller. Restricted breeding is similar to the island

model [10]. Separate populations exist for each controller. With the free breeding model,

a single population is used, but different individuals are selected to form the team [69].

Three different forms of communication were tested: no-sensing, deictic and name-

based sensing [69]. Deictic sensing provides limited information about the current location

of other predators. A vector pointing toward the nearest predator is an example of deictic

sensing. With name-based sensing, predators are explicitly identified.

When no sensing was used, homogenous predators performed the best [69]. In ex-

periments with name-based sensing, heterogeneous individuals dominated. In all cases,

restricted breeding outperformed free breeding. Even though heterogeneous teams per-

formed the best with name based sensing, there is some concern about whether the in-

crease in performance is justified by the additional computation required [69]. Allowing the

evolution of explicit communication between agents is offered as an area of future research

[69].

The difficulty of generating robust robot control programs was considered by Ito [44]

and Chongstitvatana [23]. Ito states that, “the more the evolutionary process proceeds, the

more the genes adapt heavily to the training environment” [44]. As a result, small changes

in the environment can render the evolved controllers useless [44, 23]. Though robustness

is considered a requirement for performing real world tasks, it is often neglected in the

research [44].

There are two types of robustness to consider [44]. Individual robustness measures

the ability of evolved solutions to adapt to new or modified environments. Using a different
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starting location or orientation and adding noise to sensors and actuators are techniques

proposed to improve individual robustness [23, 39, 44, 88].

Population robustness is the ability of the “genetic pool” [44] to continue evolving

after the environment is changed [44]. Experiments by Ito revealed that GP was able to

evolve controllers for the new environment when changed during evolution [44]. The new

solution was not robust though, as it failed to work for the initial environment. Good

solutions were evolved in fewer generations, suggesting that effective building blocks were

present in the population [44].

Robust obstacle avoidance behavior is evolved in [23] by evaluating each individual

in multiple, similar environments. More robust programs were generated when a large

number of very similar environments was used in the fitness evaluation. Decreasing the

similarity or number of environments produced less robust solutions [23].

The emergence of collective behavior in flying agents has recently been examined

[97]. Simulations were performed in a three-dimensional, real-valued environment. Two

experiments were presented in which agents had to obtain energy from randomly located

energy sources. The first extended Reynolds’ work on flocking [86], allowing for multiple

species, goal seeking behavior and evolution of the coefficients in the “motion control equa-

tion” [97]. Reproduction occurred when an individual ran out of energy. The genome of

the best individual of the same species, possibly mutated, was used for the new individual.

A complex, energy guarding behavior often emerged in the simulations [97].

The second experiment evolved control programs using GP [97]. For this experiment,

the distinction between species was removed and agents were allowed to transfer energy to

each other. Evolution was “autoconstructive” which means that individuals are responsible

for their own reproduction [97]. Again, complex behaviors, such as the “altruistic feed-

ing behavior,” were observed. This research illustrates the ability to evolve coordinated

behavior in a three-dimensional environment.
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2.4 Summary

This chapter presented the historical origins of genetic programming and its relation-

ship to other approaches used in evolutionary computation. A general description of the

problem domain was provided. A survey of autonomous agent control systems was also

performed. Evolutionary and non-evolutionary approaches were reviewed and compared.

In Chapter 3, the existing research is used to guide the development of a high level system

design.
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3. High Level System Design

3.1 Introduction

There are many important aspects of algorithm selection and design. This chapter

provides a detailed examination of the problem domain and its relationship to the selected

algorithm domain. First, important environmental characteristics are discussed. Then, a

description of the vehicle model is given, including sensors and communications. Next,

the algorithmic approach used is presented along with a mapping between the algorithm

domain and problem domain. Finally, the value of visualization and solid software engi-

neering principles are reviewed.

3.2 Simulated Environment

The environment being considered has a significant impact on the remaining aspects

of the problem. A discrete, two-dimensional grid world environment has a much lower

complexity than a real-valued, three-dimensional environment. Reducing the complexity

is sometimes an effective means of gaining insight into a problem. It may also be necessary

to make simplifying assumptions in order to make the problem manageable.

Solutions produced using over-simplified models may be of little value in solving the

original problem. Many efforts that work well in simulation fail to scale when implemented

in the real world [21, 38]. When simulation must be used, due to practicality, safety or

other concerns, it should be as realistic as possible.

The research presented in this thesis considers a three-dimensional environment.

Much of the existing research on evolved swarm behavior deals only with the two-dimen-

sional case [28, 47, 64, 101]. This restriction corresponds to flight restricted to a plane,

which is typically how real vehicles are flown. The restriction also carries with it an

implicit assumption that level flight is the best way to perform the given missions. It is

not intuitively obvious that that is the case.

Many different types of objects exist inside the environment (E). The most impor-

tant for this project are the set of vehicles, (V). The vehicle model is presented in the

next section. Also present in the environment are threat regions (T), obstructions (O),
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waypoints (W) and goals or targets (G). Refer to Section 2.2 for further details regarding

notation.

Given a point, p ∈ E, it is important to know if p ∈ γ, where γ is an arbitrary region.

Regions are used to represent any volume in the environment. The scope of a vehicle’s

sensor or communication equipment, the volume covered by enemy radar and restricted

airspace are all examples of regions. It is possible to define a function gγ() such that:

gγ(p, τ) > 0 if p is outside of region γ at time τ (7)

gγ(p, τ) = 0 if p is on the surface of γ at time τ

gγ(p, τ) < 0 if p is inside region γ at time τ

∀π ∀τ ∃p s.t. gγ1(p, τ) 6= gγ2(π(p, τ)) (8)

γ1, γ2 ∈ Γ

where π is a function to convert points (using translation and rotation [33]) to a common

frame of reference and Γ is the set of all regions.

Two regions are only equal iff they always have the same shape, at the same time.

Each region may have a unique shape. For instance, one type of sensor may cover a wide

angle with a limited range, while another covers a narrow angle but with a long range.

Both of these regions would differ from a region representing an obstacle like a tree or

mountain.

The shape of regions is also allowed to vary with time. This could represent a change

in the power of a radar or in the direction of a sensor. Note that the choice of coordinate

systems is arbitrary. There are well known equations to convert between rectangular,

cylindrical and spherical coordinate systems [7].

A complete physics model allows the implementation of Newton’s second law: F =

ma. This allows the inclusion of friction, gravity and aerodynamic forces to the model

[101]. Once these forces are calculated, they can be used to determine fuel or energy

requirements. Simulating the effects of physical forces can significantly increase the com-

putational requirements of a system [50, 74].
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Few researchers appear to have explored the consequences of an accurate physics

model. Trahan et al., implemented a two-dimensional swarm model using particle physics

[101]. Moore and Garcia extended the two-dimensional pursuer/evader problem by adding

mass to the system [74]. Certainly if realism is a goal, accurate physics should be included

in the simulation wherever possible.

Another aspect of an environment is whether it is static or dynamic. In a static

environment, regions do not change with time:

∀i, j gγ(p, τi) = gγ(p, τj) (9)

Static environments are computationally less demanding, since fewer aspects of the en-

vironment must be monitored and updated. They also have less realism than dynamic

environments. In real world scenarios, threats and targets may be mobile [65]. Such prob-

lems are likely to require cooperation and coordination among teammates to be solved

effectively [39, 69].

3.3 Vehicle Model

The vehicle model is the central model in the simulation. A vehicle can be defined by

its sensor, movement and communications capabilities. Vehicles can either be homogenous

or heterogeneous. Recent swarm research has focused on the homogenous vehicle model

[47, 64]. The control, capabilities and composition of vehicles in the swarm ultimately

determines its behavior. Reynolds’ study of bird flocking behavior provides an example of

this [86].

One approach to designing a vehicle model comes from the field of control theory

[45]. Figure 9 illustrates a simple control system. The plant is the object under control. In

this thesis, the plant is a single UAV. Each vehicle has a controller that accepts input from

sensors. Information about the environment and current state of the plant is combined

to produce a control signal. The control signal directs the plant. The plant may also be

affected by other forces, such as gravity.
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Figure 9 High level system control diagram [45]

The goal of this research is to produce an effective control system for a swarm of

UAVs. Using techniques from evolutionary computation, specifically genetic programming,

a control program is evolved to direct the movements of the UAVs. In general, there may

be many different types of vehicles, each with their own unique controller. The set of

vehicles using controller Cx is denoted as Vx. In this project, only homogenous sets of

vehicles are considered, thus Vx = V .

Some of the properties that vehicles in the simulation have are: position, speed,

heading. Vehicles also have certain movement constraints which are discussed in Section

3.3.1. In general, vehicles can have a local or global frame of reference, or both [64].

In a local frame of reference, all values are given relative to one’s current location and

heading. In contrast, a global frame of reference uses absolute values common throughout

the environment.

Consider the command TURN 30. Using a local frame of reference, it means turn

right 30 degrees. When using a global frame of reference though, the same instruction

means to make the new heading 30 degrees. The use of a global coordinate system relies

on the ability to obtain coordinates from some system, such as the global positioning

system (GPS) [64]. It does not seem unreasonable to assume, for purposes of this research,

that such a system will be available.
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Figure 10 Visual depiction of vectors and actuator constraints associated with vehicle
movement

Physicals quantities with numerical and directional components can be representing

using vectors [91]. Force, acceleration, velocity and displacement can all be represented

using vectors. These are precisely the values that are of concern in controlling a vehicle.

The combination of thrust and steering forces act on an aircraft to produce motion in

a certain direction, called velocity. Equations used for calculating these values are well

known.

To illustrate the use of vectors used in this research, consider the following example,

depicted in figure 10. A vehicle v is at a location, or displacement, vr0 and is attempting

to reach a different point, vr1. A new vector from the current position to the destination

can be calculated by subtracting: vr1−vr0 . This value is the new desired velocity, vv1 . An

acceleration is applied so that the vehicle will attain the new velocity: vva = 2(vv1 −vv0).

3.3.1 Sensors. Vehicles gather information about their environment from sensors.

One approach to sensor models is based on vision [47, 64, 86, 87, 89]. A sensor is used to

scan an area around the vehicle. The sensors may be able to detect, identify and determine

the distances to objects [87]. Though actual vision-based sensors may be used, often the

sensors under consideration are somewhat simplified [55, 62, 77]. The Khepera robot, for

instance, uses 8 infrared proximity sensors [77].
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The “foggy world” [87] concept can be applied to increase the realism of simulations.

Objects beyond a maximum distance from the observer are undetectable or hidden from

the sensors [87]. Another addition to vision-based systems allows objects to obscure one

another [47, 87]. Even though an object may be within range, the sensors are unable to

detect it due to some obstacle. This may also apply to electromagnetic signals, though

perhaps in a more complex manner.

Another approach to sensor modeling uses implicit sensors [39, 69, 97]. Raw sensor

data is not used. The information available to agents with this approach has already be

processed in some fashion. To obtain a vector to the nearest neighbor, the visual sensor

approach must query each sensor and perform calculations on their values. In contrast,

the meta-sensor approach assumes that calculations to derive the vector can be made by

the underlying system using available sensors.

The coevolution of sensors and behaviors has been examined [18, 106]. This allows

sensor parameters and types to be evolved. These approaches work with the vision-based

sensor models. A thorough discussion of coevolution is beyond the scope of this report.

Those interested in additional information should consult [10].

Deciding how to model vehicle sensors translates into the problem of determining the

terminal set (T ) for the GP system. One must first consider what the important aspects

of the problem are. If different sensor configurations or capabilities are being researched,

then a low level sensor model might be inappropriate.

The focus of this project is the study of emergent swarm behavior. An implicit sensor

model is chosen over the visual approach for a couple of reasons. First, since the model is

based on vectors, high level sensors which return vector values satisfy the closure property

(for additional discussion see Section 4.1.1). An alternative solution to the closure problem

is strongly typed GP [73]. Second, the capabilities of meta-sensors can be reproduced by

combining the output from low level sensors.

Sensor footprints correspond to regions (γ) in the environment. In general, each

sensor type (sx) corresponds to a region denoted by γx. A sensor value depends on its type

and is determined by a function, σx(γx). Suppose there exists a vehicle v with a proximity
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sensor σi as described in [87]. The sensor value P can be calculated using the following:

P = σp(πv(γp)) (10)

γp : y = x where 1 < x ≤ 15

πv : A transformation function which shifts γp to v’s frame of reference

σp =

 1
x2 where x is the minimum distance before another region intersects γp

0 otherwise

A biologically inspired vision approach may use one or two, conic or parabolic regions.

The sensor function could reduce the accuracy for points near the edges of the region(s)

to simulate peripheral vision [47, 64]. Other approaches might use many different sensors.

Their locations and types could be decided a priori or evolved [106].

A single, spherical sensor region γs is used in the current project. The radius of the

sphere defines a vehicle’s neighborhood, N . Only events which occur within this region can

be sensed by an individual. Events occurring beyond the neighborhood require external

communication.

Two meta-sensors are used: getV elocity(i) and getPosition(i). Each function re-

turns the value pertaining to the ith closest neighbor and itself when i = 0. A vehicle

can calculate positional information for its neighbors using a distance sensor and its own

position and orientation. The orientation of one’s neighbors could be determined using

visual cues [87]. Unfortunately, this does not accurately account for shadowing effects [47].

Each vehicle could localcast its identifier, position and orientation.

Accurately determining a neighbor’s velocity is a more difficult task. The previous

position and orientation of all neighbors can be maintained. In order to compare val-

ues, some method of identifying individuals is also required. Alternatively, each vehicle

could perform a local broadcast including its current velocity. The feasibility of such a

communication scheme seems questionable, but still plausible.

Neighbors can be any sense-able object including, but not limited to: friendly ve-

hicles, enemy vehicles, obstacles and targets. The three sensor capabilities used in this

research are: getPosition(i), getV elocity(i) and identify. The identify function repre-
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sents a set of boolean identification functions, such as the friend(i) function described

below. These sensors are sufficient for developing flocking behavior [86].

Collision Avoidance : vvavoid =
1
j

j∑
i=1

(getPosition(0)− getPosition(i)) (11)

where |getPosition(0)− getPosition(j)| ≤ dmin

Velocity Matching : vvmatch =
1
n

n∑
i=1

(getV elocity(i) · friend(i)) (12)

where n = |N | and friend(i) = 1 if the ith nearest neighbor is a

friendly vehicle and 0 otherwise

Flock Centering : vvcenter =
1

n− k + 1

n∑
i=(k)

(getPosition(0)− getPosition(i))(13)

where |getPosition(0)− getPosition(k)| > dcomfort

vvnew = ωcavvavoid + ωvmvvmatch + ωfcvvcenter (14)

where ω represents the weight of each vector in determining the new velocity [28, 86, 97].

3.3.2 Actuators. Actuators provide the physical instantiation of signals generated

by the controller. Different actuators on aircraft include: the engine, slats, spoiler, aileron,

flaps, elevator and rudder [22]. The state of these controls, along with physical forces

acting on the aircraft, determine its motion.

Evolved control programs produce control signal values that are translated to actions.

Nordin and Banzhaf used evolved programs to determine motor speed values for a Khepera

robot [77]. Koza and Rice evolved a robot control program using three movements: turn

right 30 degrees, turn left 30 degrees and move forward 1/3 foot [55]. Reynolds’ systems

calculated turn angles for critters with constant forward movement [87, 89, 88]. Systems

producing vector values for control were described in [69] and [97].

Accurately simulation must include simulating the real limitations of objects. An op-

timal course of action may not actually be possible due to real world constraints. Changing

an aircraft’s heading 180 degrees in 1 second may be desirable if a collision is about to

occur. However, it also violates the maneuvering capabilities of known aircraft.
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Two approaches to dealing with infeasible solutions are to generate only feasible

solutions or to fix the infeasible solutions. One approach at guaranteeing feasible solutions

is to restrict the set of functions and terminals. Consider the function TURN θ with the

restriction that θ ≤ 30. This would involve defining a set of functions and terminals so

that θ will never be assigned a value greater than 30.

Another method is to use specialized genetic operators [9, 73]. This is how strongly

typed genetic programming works. A special type, A, is defined for θ. Then, only terminals

of type A and functions returning type A are allowed as arguments to the TURN function.

Alternatively, invalid solutions can be altered so that they no longer violate the

problem constraints. Values that are too large can be reduced to an acceptable size [87].

Suppose θ = 87. The TURN function could substitute 30. This is the approach used in

here.

There are several constraints associated with vehicles: minimum (vvmin) and max-

imum velocity (vvmax), maximum acceleration (vamax) and maximum turn rate (θmax).

These values are determined by physical capabilities of the vehicle. A function can be

defined to adjust the desired velocity so that all constraints are satisfied:

ζ(vv1) = vv2 s.t. vvmin ≤ vv2 ≤ vvmax (15)

2(vv2 − vv0) ≤ vamax

arccos
(

vv0 · vv2

|vv0 ||vv2 |

)
≤ θmax

3.3.3 Communications. Communication between agents is another aspect to be

considered when designing multi-agent systems. Some method of communication is needed

to allow two or more agents to coordinate their actions. If one agent locates a threat or

target, the other agents in the system would benefit from sharing in that knowledge.

Communication in a dynamic, distributed system is a complex problem that has recently

been explored by Kadrovach [47].

There are two board types of communication: explicit and implicit. Explicit commu-

nication includes direct, agent-to-agent messaging as well as broadcast messages. As the
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number of agents in the system grows, the amount of communication between agents also

grows [47, 64]. Since bandwidth is limited, efficient methods of allocating it are desired.

Reliance on explicit communication is a potential risk for a distributed system devel-

oped for use in hostile environments. Systems using a hierarchical communication system

are efficient, but highly vulnerable to disruption [26]. Even systems using decentralized

communications are subject to jamming or possibly the need for silent operation.

One solution to the problems of explicit communication is based on stigmergy. “Two

individuals interact indirectly when one of then modifies the environment and the other

responds to the new environment at a later time. Such an interaction is an example of

stigmergy” [15]. The use of pheromones by ants is an example of stigmergy. The idea of

artificial pheromones has been used to develop simulated swarm control systems [36].

Implicit communication uses vehicles’ sensor values in conjunction with some decision

function to make navigation decisions. The sensors used are not directly implementable and

would likely require inter-agent communication. This is a common technique in research on

multi-agent coordination [64, 69, 87, 89, 97]. Luke and Spector showed that evolved teams

of homogeneous agents (using the same controller) using implicit communication were

unable to increase performance when direct, agent-to-agent communication was available

[69]. Heterogeneous teams however, were able to increase performance with the increased

communication capability.

Another aspect to consider is the range of communication. Long range communi-

cation requires greater transmission power than local communication. This is a concern

for a micro-UAV with a very limited power capacity. Given a vehicle (v), the set of vehi-

cles within communication range is called its neighborhood, N . In Section 3.3.1 this was

defined as a spherical region, γs. In general, different neighborhoods could be defined by

considering the elements of the power set of all sensor (including communication sensors)

regions.

Nz | z ∈ P(ΓS) (16)

The size of a neighborhood is an important property of swarm systems. Global com-

munications produces the largest possible neighborhood, where all individuals are neigh-
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bors. Each individual must consider all others, resulting in a computational complexity of

O(n2) [50, 64, 86]. For a few dozen members this is fine, but when working with hundreds

or thousands of individuals it quickly becomes unacceptable.

The opposite extreme, a very small neighborhood, can also cause problems. Individ-

uals may lose contact with the swarm if the neighborhood size is too small. Cooperative

behavior is prevented from emerging since individuals have severely limited interactions

with one another. Neighborhood size is often specified as a system parameter, though

there is no reason it has to be static.

This project does not directly consider the communication layer. Explicit commu-

nication is not used. Two scenarios are studied. The first uses getVelocity sensors which

are assumed to require some undefined form of communication. The second scenario uses

only getPosition sensors which are assumed to require no communication.

3.4 Mapping to Genetic Programming

The method used to generate controllers for the UAV swarm simulations is genetic

programming. Genetic programming allows the evolution of entire controllers, not just the

parameters as is the case with other EA approaches [64]. Novel controllers can be developed

that take into account aspects of the problem not previously considered by human experts.

All one must do is provide the GP system with the pieces needed to assemble a good

solution.

That said, evolutionary computation, and genetic programming in particular, is not

a panacea. Evolution exploits easy to find solutions even if they’re the result of an error in

the problem specification [39]. Careful consideration must be given to the definition of the

evolutionary environment. In this section a general design methodology is presented. A

high level mapping between of the autonomous UAV swarm control problem to the genetic

programming domain is given. The specific details of implementation are presented in

Chapter 4.

To fully map a problem into the GP algorithm domain, five things must be specified:

the terminal set, function set, fitness function, parameters in the problem and algorithm
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domains and termination criteria [53]. There are many different possible mappings for a

given problem domain. Consideration is given to these alternatives.

The terminal symbols (T ) correspond to leaf nodes in evolved program trees. There

are two often used approaches to designing the terminal set. First, terminals can return

values. The terminal five may return the numerical value of 5. A terminal could be used

to represent the current value returned by a sensor [55, 62, 69].

Second, terminals may have side-effects. That is, when evaluated they cause some

action to be performed in addition to, or instead of, returning a value. The terminal set

for the artificial ant problem is: turn right, turn left, move forward [53]. Each terminal

causes the ant to perform the associated action without returning a value to the parent

node.

The terminal set chosen for this project has no side-effects. Each terminal represents

sensor information that can either be directly observed or calculated using information from

sensors and communication with other vehicles. By defining T in this way, the relationship

between the sensors and terminals is emphasized. The use of side-effects appears limited

to situations where only a finite number of possible actions exist [23, 53, 55, 62].

The set of functions (F) operate on the values returned by terminal symbols and

other functions. They form the interior nodes of the program tree. Functions have one

or more arguments and return a single value. The set of functions used must be closed:

∀x∃y s.t. y = f(x). This can be satisfied by designing each function so that it can handle

all possible argument types or through restrictions on genetic operators, as in STGP [73].

Like terminal symbols, functions can also have an effect on the simulation [40, 87, 97].

An example of this is the function TURN θ which causes a vehicle’s heading to be modified

by the angle θ. Another type of function is a combination operator. The arithmetic

operators are examples of this. There are also control functions, like IF-THEN x y z,

which provide a means of conditional execution. For instance, if a vehicle is too close to

an obstacle then take corrective action; otherwise perform the standard action.

The functions used in this project are all combination functions. Vector manipulation

functions are used to produce a controller, C(), that converts sensor values into a new target
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velocity:

targetV elocity = C(s1, s2, ..., sn) (17)

All functions used in this project are of the combination class. Allowing side-effects blurs

the line between sensors, actuators and control. Control functions have been excluded in

order to keep problem complexity to a minimum. This examination provides a baseline or

benchmark from which to measure future progress.

Of prime importance in any evolutionary algorithm is the fitness function. It is the

fitness function that provides the evolutionary force which drives the search for solutions

[9]. Individuals with good building blocks, subtrees in GP, should be identified by the

fitness function. These more fit individuals are given a higher probability of reproduction.

In this way, good building blocks are propagated throughout the population.

Good partial solutions are combined to form good problem solutions. Some properties

of good solutions identified for the current problem are: no crashing into other swarm

members, no crashing into objects, avoiding threat regions, reaching the assigned targets

and moving as a group (exhibiting a natural flocking behavior).

Objective functions generate a numerical value measuring the performance of an

individual with respect to certain attributes [9]:

f : αi → R (18)

Consider the objective: Minimize the number of crashes. This can be represented symbol-

ically as:

f1 = min
n∑

i=0

(crashedi) (19)
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where crashedi = 1 if vehicle i crashed and 0 otherwise. In addition to equation 19, three

other objective functions were defined:

f2 = max
|G|∑
k=0

n∑
i=0

(reachedTargeti(k)) (20)

f3 = min
τend∑
τ=0

n∑
i=0

(centerDisti(τ)) (21)

f4 = min
τend∑
τ=0

n∑
i=0

(targetDisti(τ)) (22)

where reachedTargeti(k) > 0 if vehicle i has reached target k and 0 otherwise. The

distance functions, centerDisti(τ) and targetDisti(τ) return the distance at time τ , from

vehicle i to the swarm center of mass and current target of vehicle i respectively.

The fitness function combines objective functions to produce an overall fitness for

each individual [9]. The plain aggregating approach to multiobjective optimization is used

for this project [10]. This can be represented as follows:

F : Rn → R (23)

F =
n∑

k=1

(ωk fk(αi)) (24)

where ωk is the weight given to objective k. Further discussion of fitness functions can be

found in Section 4.1.2.

The final aspect to consider when using GP to solve a problem is the system con-

figuration. Some problems may require, or benefit from, the use of unique genetic opera-

tors. Specialized operators to reduce the size of solutions have been proposed [14, 57, 67].

Additional operators have been proposed to improve search effectiveness by increasing ex-

ploration [84] and exploitation [80]. No new operators have been implemented for this

project.

The genetic operators used in this project are the standard GP operators defined

in [53]: reproduction, crossover and mutation. Ramped half-and-half initialization is per-

formed and a strict depth limit is enforced for all trees. Although initial GP efforts focused
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on fitness proportionate selection [53], tournament selection is now the dominant method

in use [6, 62, 69, 87]. Further details such as population size and specific parameter values

are provided in Chapters 4 and 5.

3.5 Visualization

Having a lot of data is of no use unless it can be translated into useful information.

The output of a GP system is a program tree. For some problems, like symbolic regression,

that is sufficient to describe the solution. It is difficult to determine the behavior of a

controller in an environment simply by examining the program tree. This problem becomes

exponentially more complex when additional vehicles are added. One way to solve this

problem is through some type of visualization software.

The visualization tool used must be able to replicate the simulated environment in

which controllers are evolved. This means that a three-dimensional environment must be

supported. Objects in that environment, threats and targets for instance, must also be

supported. The ease of integrating the evolved controller into the visualization environment

is another concern. Having a way to automatically import controllers into the visualization

environment would be ideal.

A solution to both concerns is to use the same system for visualization and simulation.

There are many simulation systems available that are capable of modeling UAV swarms

[25]. Icosystem Corporation produced a swarm simulator called Simulation [25, 36]. It was

developed under contract for the Air Force Research Labs. The MultiUAV simulator also

supports a three-dimensional environment. Scalability is limited though, and additional

software (Matlab and Simulink) is required to run the system [25]. Another system was

used by Spector et al., in recent efforts at simulating behavior of flying agents [97]. Breve

is a three-dimensional simulation environment “designed for simulation of decentralized

systems and artificial life” [50]. Specific software selections are presented in Section 4.2.
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3.6 Software Engineering Principles

Modularity and code reuse are two principles of good software design [94]. There

is no point in reinventing the wheel. Reusing existing functions, modules or sub-systems

can dramatically reduce the time and effort required to produce a system. Furthermore,

existing software is likely to be more reliable, having already “been tested in operational

systems” [94]. Unfortunately, unique requirements sometimes do not allow for reuse. Inte-

grating existing software into one’s system may also require more effort than implementing

the same functionality from scratch.

Designing a system with modularity in mind can enable the reuse of components and

simplify testing and integration [94]. A flexible system architecture is essential in enabling

efficient, continuing research. In loosely coupled systems, modules can be swapped with

other functionally equivalent modules to study their impact. An excellent example of this

would be genetic operators in an EC system. Using modular design, new genetic operators

can be designed, implemented and studied with minimal effort.

These principles guided the development of the the system used in this project. Three

main sub-systems were identified: the GP system, a simulation and visualization environ-

ment and a conversion utility. Different GP platforms and possibly different visualization

systems could be applied to this architecture. The potential also exists to apply evolved

control programs to real robots. Cazangi et al., showed that control systems evolved in a

simulated environment can be successfully applied to a physical environment [21].

3.7 Summary

The high level design was presented in this chapter. This includes models of the

environment and vehicles including sensors, actuators and communications. A general

mapping of the problem domain into the genetic programming algorithm domain was also

given. Visualization requirements and software engineering principles were reviewed. The

next chapter uses this high level design to produce a low level specification and describes

the system implementation.
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4. Low Level Design and Implementation

This chapter presents the low level design and details of implementation. First, the high

level design and mappings presented in Chapter 3 are refined into a low level specification.

The function and terminal sets, fitness functions and system parameters are completely de-

fined. Then, the final system architecture, including existing and newly developed software

packages, is described. Finally, system implementation details are provided.

4.1 Low Level Design

A low level design specification provides all of the details required to fully implement

a system. This section refines the high level GP design from the previous chapter. All

function and terminal symbols are defined. Next, the objective functions are combined to

produce a fitness function. Finally, a comprehensive list of system parameters for the GP

system and simulation model, along with their default values, is presented.

4.1.1 Terminals and Functions. The complete set of terminals for this project

represents a variety of derived sensor values. Each terminal is listed here, followed by its

symbolic definition and a narrative description. Terminals can be calculated as displace-

ments from the origin (r) and/or as velocities (v). A rectangular coordinate system is

used.

myCurV elocity [v] : curV elocity(0)

A vector of the vehicle’s velocity.

getAvgV elocity [v] : 1
n

∑n
i=1(getV elocity(i) · friend(i))

A vector of the average velocity of friends in the neighborhood.

myCurPosition [r] : curPosition(0)

A vector to the vehicle’s position.

getCenterNeighbors [r, v] : 1
n

∑n
i=1(getPosition(i) · friend(i))− getPosition(0)

A vector to the average position of friends in the neighborhood.

getTargetPosition [r, v] : getTarget(i) where i is the vehicle’s current target

A vector to the vehicle’s current target.
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myClosestNeighbor [r, v] : (nearestNeighbor − getPosition(0)) where

nearestNeighbor = getPosition(i) if ∃i∀(j < i) (friend(i) = 1 and

friend(j) = 0) otherwise zeroV ector

A vector to the closest friend in the neighborhood.

getClosestObstacle [r, v] : (nearestObstacle− getPosition(0) where

nearestObstacle = getPosition(i) if ∃i∀(j < i) (obstacle(i) = 1 and

obstacle(j) = 0) otherwise zeroV ector

A vector to the closest obstacle in the neighborhood.

∗ getAwayV ector [v] : getPosition(0)−
1
n

∑n
i=1 (getPosition(i) · friend(i) · tooClose(i)) where tooClose(i) = 1

if (getPosition(i)− getPosition(0) ≤ rcrowded and 0 otherwise

A vector away from friends that are too close (defined by distance rcrowded).

∗ getCloserV ector [v] : 1
n

∑n
i=1 (getPosition(i) · friend(i) · tooFar(i))−

getPosition(0) where tooFar(i) = 1

if (getPosition(i)− getPosition(0) ≥ risolated and 0 otherwise

A vector toward friends that are too far away (defined by distance risolated

∗ getAvgHeading [v] : 1
n

∑n
i=1(getHeading(i) · friend(i))

unitV ector[v] : returns the vector (1, 1, 1).

doubleV ector[v] : returns the vector (2, 2, 2).

All functions used are mathematical vector operations. They apply equally to dis-

placements, velocities and accelerations. The evolved control programs produce a new

velocity vector by combining different sensor values represented in the terminal set.

vAdd(v1, v2) : Returns the result of adding v1 and v2.

vSub(v1, v2) : Returns the result of subtracting v2 from v1.

vMult(v1, v2) : Returns the result of multiplying v1 by |v2|.

vDiv(v2, v2) : Returns the result of dividing v1 by |v2|.

vCross(v1, v2) : Returns the cross product of v1 and v2 (specifically, v1× v2).
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∗ normalize(v1) : Returns the normalized vector of v1 (v1/|v1|).

NOTE: Instructions and functions marked with an asterisk were designed, but not

fully implemented.

The key factors in choosing the sets T and F are the requirements for closure and

satisfiability [53]. Closure is satisfied by selecting vectors for the terminals and vector

operations for the functions. The multiplication and division operators, which normally

use a vector and a scalar value, were redefined to use two vector arguments.

An alternative approach to closure is strongly typed genetic programming (STGP)

[73]. Using STGP, function arguments are automatically matched with compatible types.

The use of vector values seemed like a natural approach and satisfied all requirements,

so STGP was not implemented. Future approaches using scalar values could benefit from

strong typing.

Satisfiability is the other major requirement that must be met. The primitives used

in this project are similar to those used in non-GP related work [28, 47, 64, 86]. As

illustrated by equations 11 - 14 in Section 3.3.1, the sensor model is sufficient for producing

coordinated group behavior. Since solutions to the problem can be represented using the

sets defined, the requirement of satisfiability has been met.

4.1.2 Fitness Functions. Instead of evolving weight coefficients for an existing

equation, the proposed GP system generates an entirely new equation. The resulting con-

trol programs are evaluated based on certain objectives. Four different objectives functions

were given in Section 3.4. Each objective function defined a specific desirable characteristic

of the emergent swarm behavior: avoid crashing, stay in a close group and move toward the

assigned targets. The fourth objective function encourages individuals to actually reach

the assigned target.
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The final fitness function, which was developed through experimentation, is:

F =

(
τend∑
τ=0

n∑
i=0

(centerDist(i, τ)) +
τend∑
τ=0

n∑
i=0

(targetDist(i, τ)) + CP

)
·(n · |G|)−

(∑|G|
k=0

∑n
i=0 (reachedTarget(i, k))

)
(n · |G|+ 1.0)

 (25)

CP = β ·

 n∑
i=0

τend∑
τcrash

 |G|∑
i=0

|targetPosition(i + 1)− targetPosition(i)|

 (26)

where n is the number of vehicles, |G| is the number of targets, τ is the simulation time

and β is a weight for the crash penalty function.

The first term calculates the sum of the average distance of each vehicle from the

swarm center of mass over the allotted time. The second term calculates the total distance

of each vehicle from its current target over the entire simulation. A weighted penalty for

crashes is assigned (CPenalty). The penalty, given in equation 26, is based on the path

length between the start location targetPosition(0) and final target. The final term is a

reward for reaching a target. It scales the fitness based on the number of targets reached.

As the number of targets reached increases, the value of the term decreases, causing the

fitness function to return a lower (better) value.

Many different fitness functions are possible. One important aspect of the fitness

function developed in this research is that incrementally better individuals are rewarded.

This helps to steer the evolution of solutions in the right direction. Additional discussion

of how the fitness function was created can be found in Chapter 6.

A simpler way to calculate fitness would be to count the number of targets reached.

One problem with such an approach is that doesn’t take into account the fact that an

individual may get close to a target, but not actually reach it. If the algorithm only

rewards solutions when big evolutionary leaps are made, solutions may take a long time

to emerge. The fitness landscape for that type of fitness function can be envisioned as a

large flat surface with several small plateaus or gorges. The evolutionary process reduces

to a random search in this barren environment.
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The approach used in this project rewards individuals as long as they move close to

the target, even if they don’t actually reach it. This approach allows good building blocks

to be located and exploited. The fitness landscape is smoother. There may still be sharp

peaks and cliffs, but there are also gentler hills and valleys that make it easier for better

individuals to be identified.

4.1.3 System Parameters. A steady state GP was used in this project. Andre

used steady state GP in developing the Mapmaker system [6]. Reynolds also used steady

state GP to evolve coordinated group behavior [87, 89] and robust corridor following behav-

ior [88]. He claimed that fewer fitness evaluations were required compared to generational

models [87]. Unfortunately, this is not necessarily the case.

The steady state approach is also called an overlapping population system, since

the populations of successive generations overlap. Tests comparing overlapping and non-

overlapping systems have shown that overlapping systems can outperform standard EAs

[9]. However, differences in performance were found to be caused “by using different

selection and deletion operators, and not due to the use of an overlapping model [9].

An overlapping model was also used in [97] to evolve populations in the context of

artificial life. Individuals were generated randomly and placed in a simulated environment.

In order to survive, they had to be able to locate and consume energy resources. If an

agent failed to gather sufficient energy, it died. New individuals were generated either when

an agent reproduced itself or when the population fell below a minimum size.

The standard GP genetic operators were chosen in order to establish a baseline that

future research efforts can can be compared against. Mutation is used infrequently in GAs

and this is especially true for GP. The primary function of mutation in GAs is to introduce

new alleles or reintroduce alleles that have been prematurely removed from a population

[41, 53]. Koza argues that mutation is not needed in GP since it is rare for a function or

terminal to be completely removed from a GP population [53]. Mutation is not used in

this project.
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Parameter Value
Reproduction Probability 0.9
Crossover Probability 0.1
Mutation Probability 0
Initialization Method Ramped Half-and-half (2–6)
Selection Method Tournament (n=7)
Maximum Tree Depth 17

Table 1 Genetic programming system parameters and assigned values.

The values for common GP parameters are based on those typically found in the

literature. A summary the static parameters is given in Table 1. Discussion of population

size and the number of generations is provided in Chapter 5.

4.2 System Implementation

The system used in this research was assembled from three major components: a

genetic programming system, a simulation and visualization environment and a conversion

program to connect the two. This modular approach allows parts of the system to be

changed without having to completely start over. It also allows multiple components of

the same type to be used. For instance, additional converters could be developed to apply

the evolved control programs to real robot systems.

4.2.1 Genetic Programming System. A good genetic programming system should

be easy to use, fast and extensible. The ECJ system [68] is a Java-based evolutionary

computation platform. Genetic algorithms and genetic programming are supported. The

ECJ system is not the only GP platform available. Another system mentioned in the

literature is lil-gp [69, 85]. The lil-gp system was developed in C and has been extended

to support strong typing and multiple populations.

Another approach is to use LISP and develop a GP system from scratch. The first

GP systems were constructed with LISP because of the ease with which it can represent

and manipulate program trees. Programs written in LISP are themselves program trees.

Details of a LISP implementation can be located in the appendix of [53].
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The ECJ system was selected because it provided all of the functionality required for

this project and was easy to understand. All aspects of the system are defined as objects,

which makes it extremely easy to add new functionality, such as novel genetic operators.

Making minor changes to the system is easy since all parameters are specified through

parameter files. ECJ provides an easy way to gather statistics on the evolutionary process.

In ECJ, each function and terminal symbol is defined as an object. Each object

implements a specific behavior. The function vAdd(v1,v2) would perform the vector

addition operation and return the result. This allows the system to evaluate the fitness

of an evolved program tree. This aspect of ECJ was not used in the current project.

The evolutionary system was used only to perform the evolutionary functions. Fitness

evaluation was performed in a simulated environment.

An important aspect of any stochastic algorithm is random number generation. The

ECJ system uses the Mersenne Twister random number generator [68, 71]. It is very fast

and has a period of 219937 − 1.

4.2.2 Simulation Environment. The simulation and visualization environment

selected for this project was Breve [51]. Breve was developed for the simulation of artificial

life and decentralized systems. The key feature of Breve is that it provides a continuous,

three-dimensional simulation environment. It also supports collision detection and object

neighborhood identification.

Other options for a simulation and visualization environment include: Swarm, Star-

Logo and Icosystems’ Simulation. Swarm is a popular package that was developed at the

Santa Fe Institute to study decentralized systems [50]. Star-Logo is a platform based on

the Logo computer language [50]. Neither of these systems supports three-dimensional en-

vironments. Icosystems developed a three-dimensional simulation environment specifically

to simulate the actions of UAVs [36]. This program is not readily available though, and it

is unknown whether the source code can be obtained [25].

The Breve platform supports physical simulation, including forces like gravity [50].

Simulations using the physics engine run significantly slower due to the increased compu-

tational overhead. This research does not use the physical simulation capabilities of Breve.
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Collision and neighbor detection are also provided by Breve. These capabilities greatly

simplify the process of developing a swarm model.

Another benefit of Breve is that it works on Linux, Windows and Mac OS X systems.

Source code is also available [51]. This allows the system to be expanded to support unique

research needs, such as adding a communication system to the simulator. Breve plug-ins

have been developed to support the PushGP system [97], but Breve does not provide native

evolutionary operators. In order to evaluate control programs produced by ECJ, they must

be imported into the simulator.

Breve simulations are coded in an interpreted, object-oriented language called steve.

Genetic programs are represented as symbolic expressions. The solution adopted for this

thesis is to convert the evolved programs into valid steve programs. This is done by a

specially developed conversion program.

4.2.3 Conversion Program. Converting one language to another is precisely

the function of a compiler [42]. The conversion program was developed using lex and

yacc. Converting structured input from one form to another consists of three operations:

identifying significant components, or tokens, determining how the tokens are related and

finally outputting the information in a new format.

Identifying the tokens is called lexical analysis [63]. Lex uses a specification to gener-

ate a program that can divide input into tokens. A GP program is composed of parenthe-

ses, functions and terminals. Once the functions and terminals have been tokenized, their

relationship to one another must be determined.

Simply identifying tokens is not enough to be able to convert the program tree into

a steve program. Entire expressions must be identified. The relationship between tokens

is given by a grammar [63]. The grammar used in this project is given in Table 2.

Yacc uses the grammar, and the lexer produced by lex, to identify programs, ex-

pressions and terminals. At this point in the conversion process, all parts of the evolved

program are completely identified. The evolved program may look something like: (vAdd

getAvgVelocity getTargetPosition). It still must be converted to a format steve will accept:

result = vAdd(getAvgVelocity, getTargetPosition).
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Program → Expression
Expression → ( Expression ) |

( Function ) |
TERMINAL

Function → FUNCTION Expression Expression
TERMINAL ∈ T
FUNCTION ∈ F

Table 2 The grammar used to parse evolved GP symbolic expressions.

Figure 11 Visual depiction of information flow within the system

This process can also be performed using yacc. With the current grammar, the

process is relatively simple. A series of variables are used to store the results of the

calculations. Expressions and functions are identified using an in-order traversal of the

tree. This corresponds to how they should be executed as well. The result of this process

can be seen in Appendix D.

4.2.4 Information Flow. The flow of information through the constructed system

is illustrated in Figure 11. Programs are represented with solid boxes and disk files are

represented as dashed boxes. Numbers are used to show the sequence of actions.

The evolutionary system controls the process. When an individual needs to be eval-

uated, it is saved to a disk file(1). Then the converter program changes the symbolic

expression into a steve program (2–3) and inserts it into a program template (4–5). Next

the evolutionary system executes the simulation program (6–7). After the evaluation is

complete, a fitness value is returned (8). Finally, this value is assigned to the individual.
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4.2.5 Software Engineering. Code readability and maintainability are important

elements of software implementation. Commenting source code is one way to make it

easier for others to understand. Proper spacing, like indenting nested statements, and

descriptive variable names are also good techniques. Software that is well designed and

easy to understand is also easier to maintain [94]. This is a big concern since it is estimated

that over half of the effort expended on software projects is devoted to the maintenance

phase [94].

4.3 Summary

A low level specification was presented in this chapter. The specific function and

terminal sets needed for the GP system were defined and evolutionary parameters were

provided. Software to implement the designed system was described. The information

flow within the system was also illustrated. In Chapter 5, experimental procedures are

reviewed, followed by analysis of results.
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5. Design of Experiments, Testing Procedures and Analysis of Results

In this chapter, the experimental design process is discussed. Tests are developed to val-

idate the hypothesis that cooperative swarming behavior can be generated using genetic

programming. Quantitative and qualitative measures of performance are considered. Re-

sults of experiments are presented along with thoughtful analysis.

5.1 Design of Experiments

Experiments were designed to determine whether or not target seeking and obsta-

cle avoidance behaviors could be evolved for a homogenous swarm of UAVs in a three-

dimensional, simulated environment. The impact of different sensor configurations is ex-

plored. Robustness of evolved solutions is also considered.

5.1.1 Baseline. To allow a comparison of the performance of evolved controllers,

a baseline was established. The baseline controller was hand-coded using an approach

based on equation 14. A new acceleration vector was calculated using collision avoidance,

cohesion maintenance (flock centering) and target seeking behaviors. Weighting coefficients

were determined experimentally to minimize crashing and maximize the number of targets

reached. The baseline control equation is:

vanew = ωcavvavoid + ωfcvvcenter + ωtsvvtarget + ωnvnoise (27)

where ωca = 5 ωfc = 1 ωts = 3 ωn = 2

Target Seeking : vvtarget = (targetPosition(i)− getPosition(0)) (28)

A random noise vector was added to simulated the effects of faulty sensors or actuators.

Swarm formation and behavior were initially judged qualitatively. Figure 12 illustrates a

cohesive, symmetric swarm.

In addition to visual observation of the simulations, quantitative data were collected.

Table 3 shows the values for the performance of the baseline controller. Statistics collected

include minimum, maximum, mean, median, variance and standard deviation. Data is

collected for n = 100 trials unless otherwise noted. The number of trials was chosen so
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Figure 12 Image of a swarm with a high level of cohesion

Baseline
Fitness Targets Crashes

Mean 71789.22 59.79 5.98
Median 72495.76 50.00 6.00
Minimum 0.00 43.00 0.00
Maximum 183977.99 80.00 10.00
Variance 1909926962.19 69.00 5.70
Std. Deviation 43702.71 8.31 2.39

Table 3 Statistical data collected for baseline.

that the Central Limit Theorem could be applied, allowing a normal distribution to be

assumed [72].

5.1.2 Statistical Methods. In order to gain greater insight into the relationship

between the baseline and evolved controllers, a statistical comparison of the means was

performed. Since the true mean (µ) and variance (σ) are unknown, estimators (x̄ and

s) were used. The Smith-Satterthwaite procedure was used to perform significance test-

ing with a confidence level of 95% [72]. The significance test is performed using the T
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distribution. The degrees of freedom (γ) are calculated with the following [72]:

γ
.=

[
S2

1/n1 + S2
2/n2

]2
[S2

1/n1]2
n1−1 + [S2

2/n2]2
n2−1

(29)

“The observed value of the test statistic” [72] is calculated using:

(X̄1 − X̄2)− (µ1 − µ2)√
S2

1/n1 + S2
2/n2

(30)

5.1.3 Evolutionary Statistics. In addition to the statistics collected to compare

the best evolved controllers in each evolutionary run, statistics are needed for the evolu-

tionary runs themselves. Important values are the mean population fitness and best fitness.

These statistics provide a way to gauge the progress of the evolutionary process and have

been used by others in the field [53, 69, 84].

Due to the stochastic nature of evolutionary computation, results may vary from one

trial to the next. That is, the best individuals from two separate runs of the GP system,

using the exact same parameter values, may have significantly different fitness values. The

simulated environment may also be dynamic, which could contribute to variations between

evolutionary runs. In order to provide an accurate view of the performance of EAs, multiple

trials using different seeds for the random number generator are needed.

The evolution and simulation of thousands of individuals is a computationally inten-

sive task. It takes approximately 10 seconds to perform each fitness evaluation. A static

population size of 350 individuals was chosen to allow for sufficient population diversity.

Genetic programming populations between 200 and 1024 are frequently used [53, 55, 69, 87].

Studies of dynamic population sizing with GP have recently yielded promising results [66].

The number of generations was limited by computational requirements. A single

evolutionary run consisted of the evaluation of 2100 individuals, or 6 pseudo-generations.

A pseudo-generation is the evaluation of a number of individuals equal to the population

size. Each run took approximately 27 hours to complete on the computer system used for

testing. As a result, only one evolutionary run was performed for each configuration.
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Terminal Sets T = {myCurVelocity, getCenterNeighbors,
getTargetPosition, myClosestNeighbor,
getClosestObstacle, myCurVelocity,
unitVector, doubleVector, getAvgVelocity }

T0 = T
T1 = T − getAvgVelocity

Function Set F = {vAdd(2), vSub(2), vMult(2), vDiv(2)}

Table 4 Sets of functions and terminals used in testing

5.1.4 Sensor Configurations. Two sensor configurations were studied. Table 4

lists the function and terminal sets associated with each. The difference between the two is

the getAvgV elocity sensor. As previously discussed, the ability to accurately determine the

velocity of neighbors may be unrealistic. Removing the sensor results in a more accurate set

of vehicle capabilities. It may also increase the difficulty of evolving an effective controller.

5.1.5 Robustness of Solutions. In order to generate robust solutions, controllers

must be exposed to a variety of situations which may be encountered. Different techniques

have been used to solve this problem. Randomly varying the starting orientation of in-

dividuals was used by Reynolds in a study of corridor following behavior [88]. Another

approach is to test individuals in multiple environments and combine their fitness scores

[23]. Haynes and Wainwright achieved good results by modifying the environment after

each generation [40].

The approach used for this thesis is to randomly initialize the individuals to different

positions and orientations. Each individual is evaluated 5 times, and the resulting fitness

scores are averaged to produce the individual’s final fitness. Each best-of-run controller,

along with the hand-coded controller, is evaluated in 3 additional environments. These

tests show how well the controllers perform in environments they were not specifically

designed for.

5.2 Simulated Environment

The environment agents are evolved in is a continuous, three-dimensional space.

There are 4 spherical targets in the environment. Figure 13 illustrates the starting location
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Figure 13 Graph of the starting configuration for the baseline map. Targets are num-
bered in sequence

of the vehicles and positions of the targets for the baseline configuration. The exact

locations of all targets are given in Table 5. . The y-axis is the vertical axis in the

simulation. Each target has a radius of 2.5. Specific units of measurement were not

considered in this project.

There is a ground object in the simulation. If agents collide with this object, they

have crashed. The ground object is actually a rectangular-shaped box that extends ±100.0

units in the x and z plane, where −7 ≤ y ≤ −3. Vehicles are the only objects currently

allowed to move during the simulation.

Each UAV is represented as a cone with radius 0.1 and height 0.8. The tip of the cone

points in the direction of the vehicle’s current velocity vector. All vehicles have a maximum

velocity and acceleration of 2 and a minimum velocity of 1. A maximum turning radius

of 0.25 radians or about 14.3 degrees. A maximum turn of 0.5 radians was used in [87].

Turning ability in [97] is limited by the vehicle’s maximum acceleration.

Vehicles are initially positioned randomly within the space defined by a cube with

sides of length 6.0: −3.0 ≤ x ≤ 3.0, −3.0 ≤ y ≤ 3.0, −3.0 ≤ z ≤ 3.0. Vehicles are given

a random initial heading and a speed equal to the minimum velocity. The neighborhood
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Figure 14 Picture of map number 2

size is set to 8.0 units and the default number of vehicles in the swarm is 20. Tests were

conducted to see whether the evolved control programs were able to cope successfully when

additional vehicles were added.

Two additional maps were used to test the robustness of each controller. The first

additional map is the same as the baseline map except the starting location for vehicles

has been changed. In the second map, 2 more targets have been added for a total of 6.

The positions of the existing targets have also been altered. Figures 14 and 15 shows the

starting configurations for these additional maps. Table 5 lists the order, center location of

each target, path length between the starting location and the final target, and the center

of the cube-shaped starting region.

5.3 Testing Environment

The computer system used for testing was a Macintosh iBook. It contained a 800Mhz

G3 processor with 640MB of system memory. The operating system was OS X v10.2.8.

Version 10 of the evolutionary computation platform ECJ [68] was used with Java version

1.3.1 for OS X. Breve v1.7 was used for command-line testing and visualization [51].
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Figure 15 Picture of map number 3

Target number Baseline Map Map1 Map2
1 (15, 0, 15) (15, 0, 15) (-5, 5, -25)
2 (-15, 5, 15) (-15, 5, 15) (-25, 25, -10)
3 (-15, 0, -15) (-15, 0, -15) (-15, 0, 0)
4 (15, 15, -15) (15, 15, -15) (-10, 30, 0)
5 n/a n/a (10, 5, 0)
6 n/a n/a (0, 5, 15)
Path length 115.58 148.12 167.18
Start origin (0.0, 0.0, 0.0) (-15, 30, -15) (0.0, 0.0, 0.0)

Table 5 Target and starting position configurations for each test map
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Terminals Te1 = T
⋃

myCurPosition
Functions Fe1 = F

⋃
vCross(2)

Fitness function Fe1

Population size 500
Pseudo-generations 11
Evaluations per individual 1
Simulation time 130
Best fitness 11544.575
Time best individual evolved Evaluation # 4384 + 500 = 4884

Pseudo-generation # 9

Table 6 Results and system configuration values for initial test 1.

In all evolutionary runs the same seed value (4357) was used for random number

generation. If multiple evolutionary trials were performed, a different seed would need to

be used for each. Using the same seed provides some measure of comparability between

the different experiments.

5.4 Analysis of Results

Results of the experiments are presented along with thoughtful analysis. Successes

as well as miscalculations are reviewed to provide a complete view of the research process.

Understanding why things fail is important because things often do not work correctly

on the first attempt. Statistics, graphs and pictures are presented to provide a compre-

hensive overview of test results. Finally, the relevance of this project in relation to other

contemporary research is discussed.

5.4.1 Initial Tests. A series of evolutionary runs was performed before the system

design reached its final configuration. This section discusses those initial tests, what was

learned and how the design was adjusted in response. The values used for the first test

run are summarized in Table 6.

The behavior exhibited by the best individual is far from the desired target seeking

behavior. Individuals rapidly form into a relatively tight swarm which reflects the emphasis
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Population size 350
Pseudo-generations 6
Evaluations per individual 3
Simulation time 130
Best fitness 18030.90
Time best individual evolved Evaluation # 1142 + 350 = 1492

Pseudo-generation # 4

Table 7 Results and system configuration values for initial test 2.

of the fitness function on cohesiveness.

Fe1 =

(
τend∑
τ=0

n∑
i=0

(centerDist(i, τ)) +
τend∑
τ=0

n∑
i=0

(targetDist(i, τ))

)
· (31)(n · |G|)−

(∑|G|
k=0

∑n
i=0 (reachedTarget(i, k))

)
(n · |G|+ 1.0)

 · (crashes + 1)

Then the swarm enters a holding pattern and simply circles until time expires. This

seems to be caused by the crashing penalty in the fitness function. All crashes are equally

weighted under this fitness function. Vehicles that survive a long time before crashing are

weighted equally with those which crash early in the simulation.

Other problems were identified in simulations run on the best evolved individual.

The individuals were able to fly through the ground. They also were able to turn at sharp

angles. Both of these actions were quite unrealistic.

It was noted that fitness values of the evolved controllers varied greatly between

simulations. The fact that an individual performed well on one fitness evaluation does

not mean it is a good overall program. It simply means that it performs well using the

exact starting location and orientations that were used. To resolve this problem, fitness

evaluations were averaged over multiple trials.

The second test run reduced the population size to 350 individuals and the number

of pseudo-generations to 6. The number of fitness evaluations per individual was increased

to 3. As a result, the total number of evaluations per run increased from 5,500 to 6,300.

The best individual, with a fitness of 18030.90, was found after evaluating 1492

individuals. The resulting program is rather short:
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(vSub (vDiv myClosestNeighbor getCenterNeighbors)

(vMult (vDiv myCurVelocity unitVector) getAvgVelocity))

One interesting aspect of the program that the terminal getTargetPosition is not used.

Even more interesting is that the swarm moves toward the target, but at an angle some-

where between 45 and 60 degrees so that it passes over the top. Though the fitness value

is higher for this test, there seems to be less variance.

There still appeared to be a significant swing in fitness values of the best controller

from one simulation to the next. As a result, the number of evaluations per individual was

increased to 5. The number of evaluations needed to estimate the mean fitness with a 95%

level of confidence is given by:

n
.=

(za/2)2σ2

d2
(32)

where za/2 = 1.960 and d is the confidence interval desired.

Thus, to estimate the mean with a 95% confidence interval of width 7200 (d = 3600),

567 samples are needed (σ2 = 1.9099e9, the sample variance of the hand-coded controller

in the baseline configuration). The width of the confidence interval was chosen to be

approximately ±5% of the observed mean, 71789.22. A higher number of samples may be

needed for other configurations.

In the third test, the ground was redefined to make it impenetrable. The best

fitness value, which was reached on evaluation 1322, was 12446.42. This is a very good

fitness score, however, it was accompanied by a very bizarre behavior. Immediately after

initialization, the swarm would turn and crash into the ground!

This makes sense when one considers the fitness function, previously defined by

equation 31. When a crash occurs has no effect on the fitness function. In this case, by

immediately flying into the ground, the vehicles are spared the cumulative costs of cohe-

sion (avgCenterDist) and target seeking (avgTargetDist). This illustrates how effective

evolution is at exploiting weaknesses in the problem specification.

The myCurPosition terminal and vCross function were removed from the system

for test 3. The reason for this was to convert all sensor values from points to velocities.

This standardized the sensors on a single type and removed the task of evolving the velocity
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Terminals Te3 = T
Functions Fe3 = F
Population size 350
Pseudo-generations 6
Evaluations per individual 5
Simulation time 130
Best fitness 12446.42
Time best individual evolved Evaluation # 972 + 350 = 1322

Pseudo-generation # 3

Table 8 Results and system configuration values for initial test 3.

values from the evolutionary system. The cross product operator was removed because it

seemed superfluous. This is merely conjecture though and has not been validated through

experimentation.

A controller able to produce a group target seeking and collision avoidance behaviors

was evolved in the fourth experiment. The fitness function was updated to encourage

members of the swarm to survive as long as possible whether they reached the target or

not. This change produced the final fitness function presented by equations 25 and 26 in

Section 4.1.2.

This change still penalized vehicles that crashed, but the penalty decreased as the

simulation time passed. Building blocks that support the target seeking behavior can be

exploited because their fitness is proportionally higher with the new fitness function. The

most fit individual, with a score of 17435.65, was discovered on evaluation 1399. Since

the fitness function changed, direct comparisons between the values of this run and the

previous 3 cannot be made.

5.4.2 Evolutionary Results. Identical vehicle constraints were used to evolve two

controllers with different sensor capabilities. Parameter values are summarized in Table

9. The simulation time was extended to 160 units. It was discovered in some preliminary

simulations that 130 time units was not always sufficient to allow all vehicles to reach each

target. This gives slower moving vehicles an increased chance of reaching all of the targets.
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Functions F = { }
Population size 350
Pseudo-generations 6
Evaluations per individual 5
Simulation time 160
Maximum turn angle 0.25 radians = 14.32 degrees
Minimum velocity 1.0
Maximum velocity 2.0
Maximum acceleration 2.0
Neighborhood size 8.0

Table 9 System configuration values for the final evolutionary runs.

Test 5 Test 6
Terminal Set T0 T1

Program Depth 5 7
Number Nodes 13 47
Evaluation best individual found 1327 502
Evolution time (hours) 22.85 16.26
Fitness of best individual 39965.25 68525.34

Table 10 Information about evolved programs for tests 5 and 6

Graphs showing the evolutionary progress of the GP algorithm are given in Figures

16 and 17. The evolved control programs evolved for tests 5 and 6 are given in Appendix

E and Table 10 summarizes important properties of the evolved programs.

The graphs begin at evaluation 350, after all individuals have been evaluated one

time. A rapid decrease in fitness occurs as the most unfit programs are eliminated from

the population. When the evolutionary process is ended at evaluation 2100, the average

fitness is still declining slightly. Additional evaluations may result in further improvements,

but significant gains seem unlikely. Additional experimentation is required to validate this

hypothesis.

Few improvements in the most fit individuals were made. In the first trial, Figure

16, 11 new best individuals were evolved. In the second trial, Figure 17, only 2 new

best individuals were created. One possible explanation is that since the evolutionary

process only lasted for 6 pseudo-generations, there wasn’t enough opportunity to find

better solutions.
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Figure 16 Graph of fitness values during evolution (Test 5) with getAvgVelocity

Figure 17 Graph of fitness values during evolution using (Test 6) without getAvgVelocity
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Map Baseline Map2 Map 3
Swarm Size 20 40 60 20 20
Hand-coded controller 71789.22 293544.46 652720.80 95991.49 188598.94
Normalized n/a 146772.22 217573.60 74903.43 86925.33
Test 5 controller 94683.94 347020.59 732181.92 113058.42 249259.16
Normalized n/a 173510.30 244060.64 88220.98 114883.65
Test 6 controller 133506.16 445074.83 847532.52 153140.49 330394.96
Normalized n/a 222537.41 282510.85 119497.55 152279.18
Simulation Time 160 160 160 160 260

Table 11 Comparison of mean fitness score for each controller (n=100)

Another possibility is that the final individuals were near optimal and that further

improvement wasn’t possible. The best individual in the first trial had a fitness of 39965.25

during evolution. This is significantly better than the average performance of the hand-

coded controller, but still far from the best score of 0. A better understanding of the

fitness landscape is needed to determine why local minima are reached and how to avoid

or escape from them.

It is difficult to draw many conclusions from these results since only a single evolu-

tionary run was performed for each sensor configuration. The individuals evolved may be

significantly above or below average. An earlier test performed using the same configura-

tion as test 5 resulted in an individual with a fitness of 34403.53.

5.4.3 Comparison of Controller Performance. The performance of three con-

trollers was compared using 5 different configurations. Each controller was tested on three

different maps (baseline, map2 and map3) and with three different sized swarms (20, 40

and 60 individuals). Table 11 shows the mean fitness for each configuration after 100 eval-

uations. Results are displayed graphically in Figure 18. Complete statistical results are

located in Appendix F.

The means were normalized to compensate for the different numbers of vehicles,

targets and the different path lengths of the maps. For example, the hand-coded controller

in the 60 vehicle scenario has a normalized fitness of 74903.43 = 652720.80∗1/3. The hand-

coded controller statistically outperformed both of the evolved controllers with at least a
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Figure 18 Graph of mean fitness values for evolved controllers (n=100)

95% level of confidence. The controller with velocity sensing capabilities outperformed the

controller without, also with at least a 95% level of confidence.

Figures 19 through 22 show the number of targets reached, the number of vehicle

crashes, the average distance to the center of the swarm and the average distance to the

current target. This data is helpful in analyzing the behavior produced by the controllers.

Increasing the number of vehicles in the swarm results in a dramatic drop in performance,

even after scores are normalized. The primary reason for this is illustrated in Figure 20.

While the number of crashes is relatively unaffected by the change in maps, it seems to

be significantly influenced by the number of vehicles in the swarm. Even the hand-coded

controller failed to adequately deal with the increased number of vehicles.

The reason for this lack of scalability is not immediately apparent. One possible

reason is overcrowding. Figure 22 shows that, for the evolved controllers, the larger swarms

occupied roughly the same amount of space as the normal sized swarm. With the increased

number of vehicles, the swarm density must increase in order to maintain the same average

distance to the center. This increased density limits maneuverability and makes it more

difficult for vehicles to avoid colliding with one another. Figures 23 and 24 illustrate the

difference in density between the larger and normal sized swarms.
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Figure 19 Graph of mean number of targets reached (n=100)

Figure 20 Graph of mean number of crashes (n=100)
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Figure 21 Graph of mean distance to the current target (n=100)

Figure 22 Graph of mean distance to the center of the swarm (n=100)
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Figure 23 Figure illustrating the configuration and density of the swarm produced by
the Test 6 controller with (n=60)

Figure 24 Figure illustrating the configuration and density of the swarm produced by
the Test 6 controller with (n=20)
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Map Baseline Map2 Map 3
Hand-coded controller 59.79 57.16 85.78
Percent of available 0.75 0.72 0.72
Test 5 controller 53.93 45.05 78.17
Normalized 0.67 0.56 0.65
Test 6 controller 50.88 47.85 75.21
Normalized 0.64 0.60 0.63

Table 12 Comparison of total and percentage of targets reached in the different maps

Another potential cause of vehicle crashing is the way navigation is performed. Ve-

hicles converge toward the center of each target. This forces vehicles closer together which

ultimately results in more collisions. The getAvgVelocity instruction, which is similar to

Reynolds’ alignment vector [86], appears to have little effect in preventing collisions.

One approach to solving the crowding problem is to use additional sensors, such as

getAwayVector and getCloserVector which were described in Chapter 4. These instructions

add new parameters to the system though, the too close and too far away distances.

Another technique is to add IF-THEN statements to the function set. Vehicles could then

determine their desired velocity based on some condition. Redesigning the navigation so

that vehicles fly at the entire target region, and not just a specific point within it may also

improve results.

The alternate maps also produced worse results than the baseline for all three con-

trollers. This was not caused by an increase in the number of crashes though. The poorer

performance is caused by an increase in the distances to the target and center of the swarm,

as well as fewer targets being reached. Although the absolute number of targets reached

in the map3 scenario increased (see Figure 19, the percentage of available targets reached

stays the same, or decreases slightly. This can be seen in Table 12.

One interesting anomaly is the hard-coded controller data in Figure 21. The average

distance to target for map2 seems abnormally high. This is caused by the hard-coded

vehicle parameters. The maximum velocity for the hard-coded vehicle is 1.0, whereas it is

2.0 for the evolved controllers. The initial starting position for vehicles in map2 is a long

distance from the first target. The target distance accumulates faster because the vehicles

move much slower.
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The analysis showed that the two controllers evolved in this project performed worse

than the hand-coded controller. This result cannot be generalized to all potentially evolved

controllers. Many more tests are required to determine whether that hypothesis is true or

not.

5.4.4 Comparison to Existing Research. Unlike the recent work by Lotspeich

[64] which evolved the weights for control equations, this project focused on evolving the

control equation itself. Both projects were computationally intensive. One advantage of the

previous work by Lotspeich is that multiple behaviors (reconnaissance, scan and en-route)

were considered. The current research considered only the target seeking behavior, which

corresponds with the en-route behavior. An expanded function set, including conditional

statements such as IF-THEN, is one method of handling situation-based control decisions.

Kadrovach studied swarming behavior and communication requirements [47]. He

was able to develop a methodology for classifying swarms based on stability. The swarms

produced in the current project were all very orderly (like a flock of birds rather than a

swarm of bees [47]), but no attempt to quantify their exact formation was made. One

measure of swarm formations, the average distance of members to the center was explored.

An interesting feature of Kadrovach’s work is the visibility model. This idea was also

discussed by Reynolds [86]. The shadowing effect could increase the level of realism in a

simulation.

One advantage of the current work is that a three-dimensional simulation environ-

ment was used. When simulation must be used, it should be as realistic as possible [38].

The two-dimensional case is often justified by assuming level flight. That assumption ap-

pears to unnaturally limit the behavior of the swarm. Flocks of birds do not necessarily

remain at a constant altitude, and certainly individual birds in the flock do not.

This thesis work is very similar to that of Spector et al., [97]. Their project focused

on the development of an artificial ecosystem of flying agents in a three-dimensional envi-

ronment. Individuals were generated (born), sought food, reproduced and removed (died).

Interesting and sophisticated behaviors were evolved in the simulated world using genetic

programming.
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The work by Spector et al., did not contain a significant amount of quantitative

analysis. This is understandable considering their research goal was to study the emergent

behavior, not necessarily to quantify or optimize any specific measurement. For the current

project, quantitative and qualitative analysis are performed. Numerical measurements are

needed to produce accurate, objective swarm classifications.

5.5 Summary

This chapter developed the methodology used to evolve and evaluate control pro-

grams. Evolved program trees were compared to a hand-coded controller using statistical

tests and qualitative analysis. The generalization ability of controllers was validated by

testing individuals with additional maps and different swarm sizes. Controllers generated

with genetic programming were able to produce a cohesive, robust, target seeking behav-

ior. They were comparable, though statistically inferior, to the hand-coded design. Areas

of future study and concluding comments are given in Chapter 6.
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6. Conclusions and Recommendations

6.1 Review of Goals and Objectives

This thesis has explored the possibility of using genetic programming to evolve control

systems for swarms of UAVs. The goal was to produce a controller capable of directing

a swarm to achieve mission objectives. All defined objectives required to satisfy this goal

have beet met.

Chapter 3 presented a realistic model of UAV capabilities including sensors, commu-

nications and movement constraints. A general vehicle sensor model was discussed along

with specific decisions regarding plausible sensor capabilities. The need for vehicle move-

ment constraints was also considered. Some form of communication system was assume to

exist but not explicitly defined for this project.

The general simulation environment was also introduced in Chapter 3. A three-

dimensional environment was selected in order to explore possible issues that may not exist

in the typical two-dimensional models. The Breve simulation and visualization system was

selected to implement the environment model and provide visualization of solutions. The

overall system architecture used in this project was discussed in Chapters 4.

An approach to evaluating controller performance was covered in Chapter 5. Quan-

titative and qualitative analysis are used to examine the behavior and fitness of evolved

solutions. The fitness function defined in Chapter 4 was used as the primary measure of

performance. Analysis of the fitness function components (targets reached, collisions or

crashes, swarm cohesion and distance from target) was also used to obtain a more thorough

understanding of the results.

6.2 Research Impact

Technological advances are increasing the speed and complexity with which wars

are fought. Swarms of unmanned aerial vehicles have the potential to provide increased

capability to commanders while reducing manpower requirements. Since simultaneous

control of hundreds of vehicles is beyond human capabilities, systems to assist human
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operators are essential. This research developed one approach to solving the swarm control

problem.

6.3 Future Research

This thesis explored swarm systems, simulations and genetic programming. Though

promising initial results were produced, many areas remain unexplored. Increasing the

realism and sophistication of the simulation is one need. Simulations are used because

real tests are impractical or impossible to perform. They should be as realistic as possible

given the available computing resources. The model used in this project can be improved

by adding mass and forces like gravity and friction. Noisy sensors and/or actuators could

also be added to better model actual behaviors.

Adding additional mission requirements would also improve the model presented

here. For example, developing control for reconnaissance or tracking missions. Priorities

may shift and the swarm would need to be given new goals. Interactive control of the

swarm allows this scenario to be implemented. Alternative objective functions such as fuel

consumption and time constraints might also be examined.

Much of the current swarm research considers a homogenous swarm. The capabilities

and performance of a heterogeneous swarm produced using genetic programming could be

examined. Determining the optimal number of each vehicle type and spatial configuration

of a heterogeneous swarm seems like a challenging problem.

Coevolving two swarms using a predator/prey scenario might be useful in developing

offensive or defensive swarm capabilities. Swarms could be used to guard targets in addition

to often cited offensive capabilities. It cannot be assumed that our adversaries do not have

similar capabilities. Attacking an enemy swarm with another swarm is conceivable.

Since the UAV swarm problem is a multi-objective problem, using multi-objective

GP to solve it seems reasonable. Even if a multi-objective GP algorithm is not used,

techniques from the field of multi-objective optimization should be considered. Exploration

of parallelization is another potential research area. Due to the computational requirements

of the GP system described in this thesis, limited testing was performed. Using a parallel
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platform would allow many more evaluations to be performed in a reasonable amount of

time. A parallel approach would also be useful for studying GP evolution with multiple

populations.

6.4 Summary

The research presented in this document has illustrated that genetic programming

is a viable approach to developing control systems for UAV swarms. A three-dimensional

environment and vehicle model were developed with an emphasis placed on realistic ca-

pabilities. A hand-coded controller was developed and compared with the performance of

the evolved control programs. The evolved program trees did not outperform the human-

designed controller, but were competitive.

A major benefit of this approach is that genetic programming automatically created

the control system, using only information about the system. For the simplistic config-

uration used in this project, the benefit is not great. When attempting to develop more

complex systems though, genetic programming may be able to locate novel approaches

that humans would not likely find.
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Appendix A. Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) are not a new technology. They have been used in

various forms for over 150 years. The Austrian military was the first to use unmanned

air vehicles in battle. During the seige of Venice, in 1849, Austrian Field Marshall Joseph

Radetzky attempted to bombard the city with explosive projectiles dropped from balloons

[61]. It is estimated that 200 balloons were launched in the attack. A fuse was set to

burn through the bombs support just as the device drifted over the intended target. By

all available accounts, the attack was a tremendous failure [61]. The unpredictability of

the flight path of a balloon was a serious hinderance to effective employment.

In 1863, Charles Perley was awarded a patent for Improvement in discharging ex-

plosive shells from balloons. [56, 76] Perleys device was a balloon with a hinged bottom.

Explosives would be placed in the basket. A timing device was used to trigger the lighting

of the fuse and release of the explosives. It is uncertain whether Perleys invention was ever

used [76, 56], but it would have suffered the same limitations as its predecessor.

Though these historical examples provide the earliest examples of unmanned air

vehicles, they are not considered UAVs. According to DoD Joint Publication 1-02, DoD

Dictionary a UAV is: A powered, aerial vehicle that does not carry a human operator, uses

aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely,

can be expendable or recoverable, and can carry a lethal or non-lethal payload. Ballistic or

semi ballistic vehicles, cruise missiles, and artillery projectiles are not considered unmanned

aerial vehicles. [79]

Often considered the first UAV, the Curtiss-Sperry Aerial Torpedo is more like a

cruise missile [34, 99]. The Aerial Torpedo was a modified Curtiss N-9 seaplane developed

by Elmer Sperry. Control of the aircraft was handled by an autopilot system using a

preprogrammed sequence of instructions. On March 6, 1918, the first successful flight was

conducted off the coast of Copiague, Long Island, New York [34, 24]. Though recovered

and later reflown, the Aerial Torpedo does not completely fit the DoD concept of UAVs.

The key discriminants are (1) UAVs are equipped and employed for recovery at the end of
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their flight, and cruise missiles are not, and (2) munitions carried by UAVs are not tailored

and integrated into their airframe whereas the cruise missiles warhead is. [79]

The first returnable and reusable UAV was the British Fairey Queen [56, 34]. This

new generation of UAVs, the first to be considered true UAVs, was controlled using radio

signals. The Fairey Queen was first flown in September, 1932 [34]. An American system

called the Radioplane RP-1 was demonstrated to the Army Air Corps in 1935 [75].

Unmanned aerial vehicles were used in the Korean War, Vietnam War, Gulf War,

Balkans, Afghanistan and most recently during the Iraq War [35]. Improvements in tech-

nology have allowed UAVs to expand into areas beyond reconnaissance. The Predator is an

excellent example of this. Originally designed for reconnaissance, it was updated in 2001

to carry and launch the Hellfire missile. During the 1990s, DoD invested over $3 billion in

UAV development, procurement and operations. [79] By 2010, DoD projects spending of

$3 billion per year on UAV systems [79].

It was not until very recently that UAVs have gained much notariety. Other nations

are very interested in developing and fielding UAV systems. Thirty-two nations are devel-

oping or manufacturing over 250 models of UAVs [79] Additionally, 41 countries currently

operate 80 different types of UAVs, mostly for reconnaissance [79].
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Appendix B. Genetic Programming Algorithm

1. t := 0;

2. initialize P (0) := {π1(0), . . . , πµ(0)} ∈ Π

3. evaluate P (0) : {π1(0), . . . , πµ(0)}

4. while (i(P (t)) 6= true) do

(a) reproduce : π
′
k(t) := r{pr}(P (t)) ∀k ∈ {1, . . . , µ};

(b) recombine : π
′′
k (t) := r{pc}(P (t)) ∀k ∈ {1, . . . , µ};

(c) mutate : π
′′′
k (t) := m{pm}(P (t)) ∀k ∈ {1, . . . , µ}

(d) evaluate : P
′′′

(t) := {π′′′
1 (t), ..., π

′′′
µ (t)} : {Φ(π

′′′
1 (t), . . . ,Φ(π

′′′
µ (t))}

(e) select : P (t + 1) := s(P
′′′

(t))

where ps(π
′′′
k (t)) =

E[Fk(P ′′′ (t))]

µ
=

ρ
′

Fk(P ′′′ (t))

µ · ρFk(P ′′′ (t))

=

(
RFkP ′′′ (t))

)q
−
(
ρ

′

Fk(P ′′′ (t))

)q

µ · ρFk(P ′′′ (t))

(f)

RFi =
i=j∑
j=1

ρFj(P ) and ρFi(P
′′′ (t)) =

1
µ
·

µ∑
j=1

 1 if Φ(πj) = Φ(πi)

0 otherwise


(g) t := t + 1;

5. od

The above is an outline of the basic Genetic Programming algorithm using the stan-

dard operators of reproduction, recombination and mutation. The population consists of

a set of valid computer programs composed of the functional and terminal symbols de-

fined by the user (2). The population is randomly initialized. Each individual is evaluated

and assigned a fitness value based on performance (3). Individuals from the population

are reproduced, recombined and mutated based on the probabilities associated with those

operators (4a - 4c). Tournament selection is used with tournament size q (4e) [8].
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Furthermore, the generic GP algorithm is defined by the tuple:

GP = (Π,Φ,Ω,Ψ, s, i, µ, λ) ↔

(1)

π ∈ Π =
β⋃

i=α

valid-programs(F , T , i)

where valid-programs(F , T , i) is the set of all valid computer programs using only

the function set F , terminal set T and having a maximum tree depth of i. The

minimum and maximum tree depths are given by α and β respectively.

Valid programs may be represented in list form using the following grammar: S → E

E → ( E ) | ( F ) | TERMINAL

F → F E E | FUNCTION

TERMINAL ∈ T

FUNCTION ∈ F

(2) ∀π ∈ Π : Φ(π) = f(π) where f(π) is the result returned by executing program π.

(3) Ω = {m{pm} : πµ → πµ, c{pc} : πµ → πµ, r{pr} : πµ → πµ} where the mutation

(m), crossover (c) and reproduction (r) operators are all the standard operators

defined by Koza in [53].

(4) Ψ = s(m{pm}(c{pc}(P ) ∪ r{pr}(P ))) is the generation transformation function.

(5) s : πµ → πmu, is the tournament selection operator. First q individuals are

randomly sampled from the population. The the individual with the highest fitness

of the group is selected.

(6) i(P (t)) =

 true, if ∃k : Φ(πk) = 0

false, otherwise
, stop only if the optimal fitness is reached.

Usually GP runs are stopped by a generation limit, even if an optimal solution is

found. It may be that a less complex, optimal individual can be evolved.

(7) λ = µ.
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Appendix C. The Code Growth Problem in Genetic Programming

One of the major concerns with using a variable length solution representation is the size

of the resulting individuals [14, 43, 58, 67, 95]. The time required to evaluate an individual

depends on the size of the parse tree. Larger trees contain more functions and consequently

take longer to evaluate. This increase in solution size may be an acceptable trade-off if

increasingly fit individuals are evolved. Unfortunately, the growth of individual solutions

does not appear to be driven by increases in fitness [67, 58]. This problem has been

referred to in the literature by different names including: ‘bloat’ [14, 58, 67], ‘size problem’

[14, 43, 53] and ‘code growth’ [93, 95].

In order to find solutions to the code growth problem one must understand the

nature of the problem. There have been several attempts to explain why larger and larger

programs are evolved even though fitness remains stagnant [93, 58, 78, 95]. The simplest

and most common explanation is that introns are used to shield individuals against the

harmful effects of crossover. Introns are non-coding sections of a genome [19]. These

sections of the genotype may change without affecting the phenotype [19, 93]. An example

intron is the numerical expression E in: (* E 0). No matter what E evaluates to, the entire

expression is equal to 0. Introns are a cause of code bloat in GP, but not the only cause

[93, 58, 95].

Another theory of code growth was proposed by Langdon and Poli [59] and is based

on the distribution of solutions [95]. There may be many program trees (genotypes) that

produce the same fitness value (phenotype). These programs differ syntactically, but are

the same semantically [95]. Langdon and Poli argue that for the same fitness value, larger

solutions have a greater chance of being located since they greatly outnumber the smaller

solutions. In order for this hypothesis to be true, the larger programs must be easier to

find. It is not immediately obvious whether this is true or not [95].

A third explanation for increasing solution sizes is the “removal bias” of crossover

[58, 95]. The crossover operator first selects a subtree S to replace in parent A. If S is

smaller than the average subtree of A, then it is more likely to contain only introns [95].

In this case the offspring will have the same fitness as its parent. Since no code used
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in the evaluation is modified, there can be no change in fitness. The new subtree from

parent B will be the size of the average subtree of B. The result is that on average, in cases

where fitness values are not affected, smaller subtrees are replaced by larger subtrees [95].

Searching for other potential causes of code growth is an active area of research in GP.

In order for GP to scale up to larger problems, the code growth problem must be

handled effectively. Several approaches to eliminating code growth have been studied

[14, 93, 43, 58, 67, 92]. The technique most often used is to set a maximum size or depth

limit for all individuals [53]. Individuals generated during reproduction which exceed the

size limit are discarded.

A similar approach using a dynamic maximum depth produced good results on even-

3 parity and symbolic regression problems [92]. This approach uses a dynamic limit in

addition to a strict limit. Like standard static depth limiting, individuals larger than the

dynamic limit are immediately rejected. Individuals larger than the dynamic limit, but

smaller than the strict limit, are evaluated. If the individual has a greater fitness than the

current best individual of the run, it is accepted in the new generation. Otherwise, the

individual is rejected. When a larger individual is accepted the dynamic limit is updated

to match the new best individual [92]. A decrease in population diversity was noted. This

could limit the exploration of the search space [92].

The use of explicitly defined introns (EDIs) was introducted to GP by Nordin [78].

Explicitly defined introns have also been applied to GAs [78]. In GP, an EDI is a special

function that is never evaluated when executing evolved programs. Though EDIs have

no effect on program evaluation, they are used when determining crossover points. Ex-

plicitly defined introns provide protection against building block disruption by crossover.

Improvements in fitness and efficiency have been reported when using EDIs [78]. Harries

and Smith used EDIs to assist with measuring and analyzing intron behavior [93].

Another approach using the concept of introns was proposed by Blickle and Thiele

[14]. They used a specialized crossover operator. First, intron nodes are identified and

marked as redundant. Then crossover performed, but only for non-redundant nodes. This
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forces all crossover operations to have an effect on fitness and prevents the population from

converging prematurely [14].

Code editing is another technique used to limit tree growth [67, 95]. Code editing

can be visualized as a form of tree pruning. An algorithm to locate and remove intron

nodes is executed on the program tree. This is typically performed at the end of a run

to simplify the solution [53, 95]. The benefits of removing introns during the evolutionary

process are typically offset by the costs of doing so. Furthermore, introns that are not

detected are able to exploit that weakness and proliferate throughout the population [95].

Psuedo-hillclimbing is a method where offspring are rejected if they do not have a

higher (or sometimes only different) fitness than their parents [67]. If an offpsring is rejected

from the next generation, the parent is copied instead. This technique was explored by

Harries and Smith [93] in combination with EDIs. They used the terms incremental fitness

selection (IFS) and changed fitness selection (CFS) [93]. Their results showed that IFS

could effectively control bloat and achieve a high level of fitness. Other studies have also

yielded encouraging results [67].

The inclusion of parsimony pressure is another technique that is often used to steer

the evolutionary process toward simpler solutions. There are several different ways of

adding parsimony pressure to the GP system. The simplest way is by adding an additional

term to the fitness function [14, 67, 95]. This technique is called parametric parsimony

pressure or linear parsimony pressure. A typical fitness function using this method is:

g(x) = af(x) − bs; where f(x) is the raw fitness, g(x) is the total fitness, s is the size of

the individual and a and b are some arbitrary constants[14, 67].

One difficulty with using the parametric approach is in tuning the parameters. This

is especially problematic when the fitness assessment is nonlinear and when the population

converges near a certain fitness level [67]. Similar problems motivated the use of tour-

nament selection over fitness proportionate selection [67]. Parametric parsimony pressure

can produce smaller individuals but often results in decreased fitness [95].

A similar technique uses a minimum description length (MDL) principle [43]. The

fitness function for this approach is calculated from the tree coding length and exception
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coding length. Iba et al. use a decision tree representation for their GP examples. Results

showed that the MDL-based fitness function generated smaller, more fit solutions. The

MDL approach is not a general solution since it only works on problems of a specific

structure [43].

Another approach to achieving parsimony is pareto parsimony pressure. Instead

of minimizing a single fitness function, pareto parsimony pressure uses a multiobjective

approach [67]. Pareto optimization is used to optimize multiple objectives when their

relative importance is unknown. In this approach, raw fitness and individual size are two

different objectives. This technique has yielded mixed results [67].

A new technique proposed by Luke and Panait [67] is lexicographic parsimony pres-

sure. Under this approach, raw fitness is the primary means of selection. If two individuals

have the same fitness then the smaller individual is chosen. Lexicographic parsimony pres-

sure outperformed standard depth limiting on the artificial ant, 11-bit boolean multiplexer

and even 5-parity problems [67].

It appears that the effectiveness of crossover decreases as trees grow larger [58].

Limiting individual tree size by evolving solutions as multiple smaller trees is one way to

solve this problem [58]. This is similar to the concept behind ADFs. Another approach is

to use a different crossover operator.

Langdon proposes two alternative crossover operators: size fair crossover and ho-

mologous crossover [57]. Size fair crossover limits the depth of replacement subtrees to

1 + 2 × |subtree to be deleted|. Though this limit does not appear very strict, programs

produced without it were 2.5 times larger than those using it [57]. Selection of crossover

points is biased to select subtrees of equal depth. Homologous crossover is similar to size

fair crossover. Homologous crossover deterministically selects the subtree in the second

parent that is closest in position to the one selected in the first parent. Closeness is de-

fined by the depth at which paths from the root to the subtree diverge [57]. While these

new crossover operators were successful in controlling tree growth, they were not more

effective at finding solutions on the problems tested [57].
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Managing code growth continues to be a challenge in GP. Langdon has shown

that for standard GP, increases in program size reach a quadratic limit, ranging from:

O(generations1.2−2.0) [58]. This yields a run time of O(generations2.2−3.0) [58]. There are

several different ways to control the growth of program size in GP. Currently, no general

solution has been adopted. This remains an open area of research.
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Appendix D. Portion of Steve Program Generated by Converter Software

The output of the genetic programming system is a symbolic expression. In order to use

the Breve simulation software, this s-expression must be converted into a Steve program.

S-Expression:

(vMult

(vMult

(vAdd

(vSub getTargetPosition myClosestNeighbor)

(vSub getAvgVelocity myCurVelocity))

(vDiv

(vSub getAvgVelocity myCurVelocity)

getTargetPosition))

(vMult

(vMult

(vAdd

(vSub getTargetPosition myClosestNeighbor)

(vSub getAvgVelocity myCurVelocity))

(vDiv

(vSub getAvgVelocity myCurVelocity)

getTargetPosition))

(vMult

(vAdd

(vDiv

(vSub getTargetPosition myClosestNeighbor)

getTargetPosition)

(vDiv

getClosestObstacle

(vAdd

(vMult
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(vDiv

(vSub getAvgVelocity myCurVelocity)

getTargetPosition)

unitVector)

getClosestObstacle)))

getClosestObstacle)))

The corresponding Steve program code is presented below. Temporary variables

tVar# are used to store the results of vector calculations. Expressions are evaluated using

an in-order tree traversal. This means that each expression is evaluated once it is complete.

That is, when both of its children have been evaluated or are terminal symbols.

tVar0 = (self vSub one (self getTargetPosition) two (self myClosestNeighbor)).

tVar1 = (self vSub one (self getAvgVelocity) two (self myCurVelocity)).

tVar0 = (self vAdd one tVar0 two tVar1).

tVar1 = (self vSub one (self getAvgVelocity) two (self myCurVelocity)).

tVar1 = (self vDiv one tVar1 two (self getTargetPosition)).

tVar0 = (self vMult one tVar0 two tVar1).

tVar1 = (self vSub one (self getTargetPosition) two (self myClosestNeighbor)).

tVar2 = (self vSub one (self getAvgVelocity) two (self myCurVelocity)).

tVar1 = (self vAdd one tVar1 two tVar2).

tVar2 = (self vSub one (self getAvgVelocity) two (self myCurVelocity)).

tVar2 = (self vDiv one tVar2 two (self getTargetPosition)).

tVar1 = (self vMult one tVar1 two tVar2).

tVar2 = (self vSub one (self getTargetPosition) two (self myClosestNeighbor)).

tVar2 = (self vDiv one tVar2 two (self getTargetPosition)).

tVar3 = (self vSub one (self getAvgVelocity) two (self myCurVelocity)).

tVar3 = (self vDiv one tVar3 two (self getTargetPosition)).

tVar3 = (self vMult one tVar3 two (self unitVector)).

tVar3 = (self vAdd one tVar3 two (self getClosestObstacle)).

tVar3 = (self vDiv one (self getClosestObstacle) two tVar3).

103



tVar2 = (self vAdd one tVar2 two tVar3).

tVar2 = (self vMult one tVar2 two (self getClosestObstacle)).

tVar1 = (self vMult one tVar1 two tVar2).

tVar0 = (self vMult one tVar0 two tVar1).
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Appendix E. Evolved Controller Programs in Symbolic Expression Form

E.1 Test 5 Best of Run

Fitness = 39965.2524638

(vMult

(vAdd

(vSub getTargetPosition myClosestNeighbor)

(vSub unitVector myCurVelocity))

(vDiv

(vSub getAvgVelocity myCurVelocity)

getTargetPosition))

E.2 Test 6 Best of Run

Fitness = 68525.3455516

(vAdd

(vMult

(vMult

(vDiv myCurVelocity getClosestObstacle)

(vAdd unitVector myClosestNeighbor))

(vDiv

(vSub doubleVector unitVector)

(vDiv

(vAdd

(vAdd

(vMult doubleVector doubleVector)

(vSub getTargetPosition getTargetPosition))

(vMult

(vMult doubleVector doubleVector)

(vSub unitVector doubleVector)))
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(vSub

(vSub

(vAdd getTargetPosition getClosestObstacle)

(vMult myCurVelocity myCurVelocity))

(vMult

(vDiv getTargetPosition doubleVector)

(vMult getTargetPosition myCurVelocity))))))

(vSub getTargetPosition myClosestNeighbor))

106



Appendix F. Complete Statistical Results of Controller Performance

Baseline HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 71789.22 94683.94 133506.16
Median 72495.76 84373.90 132482.20
Minimum 0.00 2700.92 26176.39
Maximum 183977.99 230390.22 277001.23
Variance 1909926962.19 2507999385.69 2849704502.45
Std Deviation 43702.71 50079.93 53382.62
Map2 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 95991.49 113058.42 153140.49
Median 89220.82 107949.12 137008.87
Minimum 3994.45 10890.78 43760.84
Maximum 270843.54 316744.86 372649.10
Variance 2947535358.57 2535845505.39 4568588412.83
Std Deviation 54291.21 50357.18 67591.33
Map3 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 188598.94 249259.16 330394.96
Median 165086.33 253873.37 318888.26
Minimum 20224.47 1860.57 37806.94
Maximum 610615.02 570453.02 758219.78
Variance 13602565806.15 15720026655.35 26935820903.16
Std Deviation 116630.04 125379.53 164121.36

Table 13 Statistical results for fitness values comparing different maps (n=100)
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Size 40 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 293544.46 347020.59 445074.83
Median 290865.92 340889.16 431982.87
Minimum 73905.71 187204.66 225471.92
Maximum 553911.26 636019.17 634271.92
Variance 9153974020.07 5950508540.59 8875072612.11
Std Deviation 95676.40 77139.54 94207.60
Size 60 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 652720.80 732181.92 847532.54
Median 652565.83 723193.23 845843.70
Minimum 352814.99 503515.32 556788.20
Maximum 1021883.90 1108122.68 1169171.36
Variance 18308570596.08 12182235200.22 13905908027.80
Std Deviation 135309.17 110373.16 117923.31

Table 14 Statistical results for fitness values comparing different swarm sizes (n=100)

Baseline HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 59.79 53.93 50.88
Median 58.00 54.00 50.00
Minimum 43.00 36.00 36.00
Maximum 80.00 76.00 66.00
Variance 69.00 55.20 46.21
Std Deviation 8.31 7.43 6.80
Map2 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 57.16 45.05 47.85
Median 57.00 44.00 48.00
Minimum 37.00 25.00 24.00
Maximum 77.00 67.00 64.00
Variance 63.79 48.78 63.22
Std Deviation 7.99 6.98 7.95
Map3 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 85.78 78.17 75.21
Median 86.00 76.00 75.50
Minimum 53.00 53.00 47.00
Maximum 110.00 116.00 104.00
Variance 149.35 143.94 154.63
Std Deviation 12.22 12.00 12.44

Table 15 Statistical results comparing number of targets reached for different maps
(n=100)
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Size 40 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 92.95 87.66 81.38
Median 92.50 88.00 82.00
Minimum 64.00 60.00 64.00
Maximum 129.00 106.00 104.00
Variance 145.38 74.00 83.67
Std Deviation 12.06 8.60 9.15
Size 60 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 112.81 110.76 105.32
Median 112.50 111.00 105.00
Minimum 78.00 76.00 80.00
Maximum 149.00 132.00 131.00
Variance 192.94 111.88 108.12
Std Deviation 13.89 10.58 10.40

Table 16 Statistical results comparing number of targets reached for different maps
(n=100)

Baseline HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 5.98 9.09 10.48
Median 6.00 9.00 11.00
Minimum 0.00 2.00 4.00
Maximum 10.00 15.00 16.00
Variance 5.70 6.08 5.08
Std Deviation 2.39 2.47 2.25
Map2 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 6.33 9.04 10.67
Median 6.00 9.00 10.00
Minimum 0.00 4.00 6.00
Maximum 12.00 14.00 16.00
Variance 5.92 4.24 4.99
Std Deviation 2.43 2.06 2.23
Map3 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 7.10 8.94 10.09
Median 7.00 9.00 10.00
Minimum 2.00 0.00 3.00
Maximum 14.00 14.00 16.00
Variance 6.09 6.36 6.35
Std Deviation 2.47 2.52 2.52

Table 17 Statistical results comparing number of crashes for different maps (n=100)
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Size 40 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 18.70 25.10 26.84
Median 19.50 25.00 27.00
Minimum 10.00 17.00 19.00
Maximum 26.00 35.00 35.00
Variance 10.74 7.46 9.17
Std Deviation 3.28 2.73 3.03
Size 60 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 34.11 43.20 44.91
Median 34.00 43.00 45.00
Minimum 26.00 34.00 37.00
Maximum 44.00 51.00 54.00
Variance 13.15 11.80 9.78
Std Deviation 3.63 3.43 3.13

Table 18 Statistical results comparing number of crashes for different maps (n=100)

Baseline HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 54380.03 19571.42 10596.84
Median 54463.50 19824.03 9878.45
Minimum 50902.74 14418.70 7559.10
Maximum 57777.78 22387.95 17498.71
Variance 2369377.72 3207713.06 4074374.15
Std Deviation 1539.28 1791.01 2018.51
Map2 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 92239.24 26450.30 16893.84
Median 92620.84 26485.66 16372.40
Minimum 88736.15 25033.84 13782.28
Maximum 94463.54 27302.41 24256.55
Variance 1385275.80 147592.53 4294243.79
Std Deviation 1176.98 384.18 2072.26
Map3 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 84661.99 33884.91 20078.57
Median 84744.55 34177.12 19751.22
Minimum 80779.64 25686.83 14501.43
Maximum 87706.34 42050.97 27231.25
Variance 2175415.12 12915070.60 8691782.77
Std Deviation 1474.93 3593.75 2948.18

Table 19 Statistical results for mean distance to current target (n=100)
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Size 40 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 59197.42 20271.75 10450.32
Median 59077.85 20678.83 10055.43
Minimum 53997.43 15910.18 7830.71
Maximum 64285.82 22014.87 16752.30
Variance 3759326.26 2087142.48 3338779.96
Std Deviation 1938.90 1444.69 1827.23
Size 60 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 61833.22 20145.87 10385.68
Median 61721.35 20569.77 10086.39
Minimum 56110.14 16646.59 7934.07
Maximum 68147.65 22141.27 15311.30
Variance 4771127.70 2144414.07 2357173.91
Std Deviation 2184.29 1464.38 1535.31

Table 20 Statistical results for mean distance to current target (n=100)

Baseline HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 10580.75 7201.50 1683.90
Median 10515.68 6973.81 1495.62
Minimum 7360.36 3738.57 594.88
Maximum 13743.14 11742.82 5583.11
Variance 1947646.30 2135936.19 757875.14
Std Deviation 1395.58 1461.48 870.56
Map2 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 12177.14 8783.29 2215.48
Median 12061.02 8907.72 2047.15
Minimum 8971.26 6862.97 925.17
Maximum 18127.01 10410.48 5609.83
Variance 2964954.63 639596.13 1057406.58
Std Deviation 1721.90 799.75 1028.30
Map3 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 16059.52 12409.64 5405.13
Median 16240.60 12254.90 5270.76
Minimum 11398.46 9042.30 1577.49
Maximum 19793.94 16576.23 10280.73
Variance 3106716.98 2672304.05 3556954.29
Std Deviation 1762.59 1634.72 1885.99

Table 21 Statistical results for mean distance to swarm center (n=100)
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Size 40 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 15148.79 7837.10 1655.93
Median 15222.17 7738.28 1495.61
Minimum 11071.00 4546.75 744.00
Maximum 19947.33 11525.59 5868.41
Variance 2983273.10 1955651.56 646392.50
Std Deviation 1727.22 1398.45 803.99
Size 60 HandCoded w/getAvgVelocity w/o getAvgVelocity
Mean 17461.83 7744.76 1699.22
Median 17268.97 7680.93 1564.22
Minimum 12595.04 5189.79 824.77
Maximum 22536.37 11009.55 4997.05
Variance 3639878.95 1794212.49 444639.66
Std Deviation 1907.85 1339.48 668.81

Table 22 Statistical results for mean distance to swarm center (n=100)
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